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Preface

Multi-Agent Systems are communities of problem-solving entities that can per-
ceive and act upon their environments to achieve their individual goals as well as
joint goals. The work on such systems integrates many technologies and concepts
in artificial intelligence and other areas of computing as well as other disciplines.

Agent-related concepts have recently increased their influence in the research
and development of Computational Logic based systems. Computational Logic
provides a plethora of well-defined, general, and rigorous frameworks for study-
ing syntax, semantics and operational models for individual agents and multi-
agent systems, for attending implementations, environments, tools, and stan-
dards, and for linking together specification and verification of properties of
individual agents and multi-agent systems.

The first workshop on Multi-Agent Systems in Logic Programming was held
in Las Cruces, New Mexico, USA, in December 1999, in conjunction with the Six-
teenth International Conference on Logic Programming, with the aim to explore
the application of Logic Programming to Multi-Agent Systems. This workshop
can be seen as a precursor of the First International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA), which was held in July 2000 at Imperial
College London, UK, under the umbrella of CL’2000, co-located with other ma-
jor Computational Logic events. Ever since, CLIMA has been a forum to discuss
techniques for representing, programming, and reasoning formally about agents
and multi-agent systems, by means of Computational Logic-based techniques.

CLIMA is now in its sixth edition. It received 30 submissions, of which only
16 were selected for presentation and inclusion in the present volume. Among the
topics covered by this year’s programme, we find agent reasoning and reasoning
about knowledge and belief, social and normative aspects of multi-agent systems,
coordination of multi-agent reasoning, planning, verification.

We feel that the important results achieved at the intersection of Computa-
tional Logic and Multi-Agent Systems have now reached a “critical mass” and,
in order to start promoting their dissemination in a systematic way, CLIMA
V1 is also hosting a tutorial programme, covering a broad range of topics, from
rational agent programming to normative and social reasoning and verification,
and a number of formalisms, from temporal logics to logic programming to deon-
tic logic and beyond. The tutorial programme is offered with the aims to intro-
duce Computational Logic-based agent programming environments, to introduce
novices to state-of-the-art Computational Logic-based research in Multi-Agent
Systems, and to provide guidelines to researchers and practitioners interested in
logic-based agent technologies. It includes the following topics:

— BDI agent programming in AgentSpeak, through an overview of the features
available with the agent programming language Jason;

— rational agent groups programming, and how to implement individual agents
through the direct execution of a formal description of individual (rational)



agent behaviour given, using a combination of temporal logic and logics
concerning belief and ability;

— multi-agent systems programming based on the multi-threaded and dis-
tributed logic programming framework Qu-Prolog;

— representation of norms of behaviour and institutional aspects of (human or
computer) societies, using the language (C/CT)*T;

— agent specifications in abductive logic programming and logic programming
with priorities, i.e., the LGP model of agency;

— theory and practice of design, specification, verification and testing of inter-
action protocols for open agent societies, using SOCS-SZ.

Fostering dissemination of results is important, but needs to be accompanied by
establishing evaluation criteria that can serve as milestones for testing new ap-
proaches and techniques. To this end, similarly to what is being done in various
parts of artificial intelligence (theorem proving, planning, operations research,
constraint programming, robo-cup etc.) and, lately, also in specialised areas in
agent systems (trading agents), we decided to promote a CLIMA contest, where
original, innovative, and effective application of Computational Logic-based tech-
niques can be confronted in solving specific multi-agent issues. CLIMA VI is
thus also hosting the First CLIMA Contest, organised by Mehdi Dastani, from
the University of Utrecht, and Jiirgen Dix, from the Technical University of
Clausthal. In order to render the aims of the contest concrete, we opted for a
particular scenario that serves as a basis for such a contest. The formulation of
such a scenario has turned out to be a very hard task. We hope that this initiative
will be a first step towards the definition of paradigms and measuring standards
that can further logic-based intelligent agent research and its application.

In addition to hosting the first CLIMA tutorial proramme and the first
CLIMA contest, CLIMA VI is also collocated with the final dissemination work-
shop of the SOCS project, a 42 months EU-funded research project which in-
volved 6 European academic partners and whose purpose was to produce a
Computational Logic model for the description, analysis and verification of global
and open societies of heterogeneous agents, called computees (standing for com-
putational logic-based agents). The collocation of the two events is motivated
by the research scope of SOCS being well within CLIMA’s scope. The SOCS
dissemination event will consist of 2 tutorials (on the GP model and on the
SOCS-ST framework, both outcomes of SOCS), and of a number of talks, aimed
at presenting and discussing the main research challenges and achievements of
the project. The talks will span a range of topics, from the motivations to adopt
formal approaches to programming Multi-Agent Systems, to the kind of results
to be expected from such research, from the problems of combining different
Computational Logic frameworks into a single agent framework, to the issues of
evaluating and testing rational agent systems.

Finally, we are very proud to introduce Robert Kowalski as the CLIMA VI
keynote speaker. His talk will advocate the need of decision theoretic features
in logic-based agents. It will also motivate the need for a pre-activity feature
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in agent systems, in addition to the conventional reactivity and pro-activity
features.

This volume collects the proceedings of the CLIMA VI workshop, the final
SOCS dissemination event, the first CLIMA tutorial programme and the first
CLIMA contest. Therefore, besides the regular CLIMA papers and the abstract
of the invited talk, it contains 5 short papers describing the 4 accepted contest
entries and the contest itself, and the abstracts of the tutorials and of the talks
of the SOCS dissemination event.

We hope that this rich programme will stimulate interesting discussions and
will help promoting research in the area.

We would like to express our gratitude to the invited tutorialists: Rafael
Bordini, from the University of Durham, Federico Chesani from the University
of Bologna, Keith Clark, Silvana Zappacosta-Amboldi, Fariba Sadri, and Marek
Sergot, all from Imperial College London, Michael Fisher, from the University of
Liverpool, Marco Gavanelli, from the University of Ferrara, and Kostas Stathis,
from City University London, and to the keynote speaker, Robert Kowalski, from
Imperial College London.

We are also thankful to the organizers of the contest: Jiirgen Dix, from the
Technical University of Clausthal, and Mehdi Dastani, from the University of
Utrecht, to Kostas Stathis for the management of local organisation and for the
prompt solution of innumerable logistic problems, and to the technical staff for
the web support.

Our thanks also go to the authors who responded to our call with very
high quality submissions, and to the members of the CLIMA VI Programme
Committee for their valuable work in the limited time available for reviewing
and discussing the submitted articles.

Finally, we are greateful to our sponsors: the EU-funded SOCS Project, IST-
2001-32530, AgentLink III, and the Association for Logic Programming, for sup-
porting the attendance to CLIMA of 18 among students and young researchers
coming from all over the world.

We hope that CLIMA VI will provide an inspiring forum to present state-
of-the-art research and further promote Computational Logic in Multi-Agent
Systems, and to discuss and confront techniques and approaches to Computa-
tional Logic/Multi-Agent Systems problem modelling and solving.

June 2005 Francesca Toni
Paolo Torroni
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Combining logic-based agents and decision
theory

Robert A. Kowalski

Department of Computing
Imperial College London
180 Queen’s Gate
London SW7 2BZ, United Kingdom
rak@doc.ic.ac.uk

Proactive and reactive thinking are different ways of generating candidate ac-
tions. Proactive thinking generates actions by reducing goals to sub-goals, and
reactive thinking generates actions in response to observed changes in the envi-
ronment. Both kinds of thinking can be combined in logic-based agent models.
Deciding what actions to perform is a separate activity, which might involve the
use of logic or not.

Decision theory and game theory, in contrast, focus on the problem of decid-
ing between alternative candidate actions, assuming the alternatives are already
given, together with their alternative expected outcomes and their probabilities
and utilities. Normally, there is no logic involved.

It is straight-forward, therefore, to combine logic-based agent models and
decision theory, by simply using logic to generate candidate actions and using
decision theory to decide what actions to perform. However, this does address
the problem of generating the expected outcomes of actions and their associated
probabilities and utilities. In this talk I will show how logic can be used for some
of these purposes. The resulting agent model combines proactive and reactive
thinking with a kind of “preactive thinking,” which can be characterised as
“thinking before you act”.



BDI Agent Programming in AgentSpeak using
Jason

Rafael H. Bordini

Department of Computer Science
University of Durham
Durham DH1 3LE, United Kingdom
R.Bordini@durham.ac.uk

The BDI agent architecture has been a central theme in the multi-agent sys-
tems literature since the early 90’s. After a period of relative declination, it seems
BDI agents are back in vogue, with various conference papers referring again to
elements of the BDI theory. Arguably, that theory provides the grounding for
some of the essential features of autonomous agents and multi-agent systems, so
it will always have an important role to play in the research in this area. Besides,
the software industry is beginning to use technologies that clearly derived from
the academic work on BDI-based systems.

AgentSpeak is one of the most elegant and coherent attempts to define a
logic programming language based on the BDI architecture. However, in its
original definition, AgentSpeak was not but an abstract programming language.
For these reasons, our effort in developing Jason was very much directed towards
using AgentSpeak as the basis, but also providing various extensions that are
required for the practical development of multi-agent systems.

This tutorial aims at giving an overview of the various features available
with Jason. The elegance of the AgentSpeak core of the language interpreted
by Jason makes it an interesting tool both for teaching multi-agent systems
as well as the practical development of multi-agent systems (in particular in
association with existing agent-oriented software engineering methodologies for
BDI-like systems). Jason is implemented in Java and is available Open Source
at http://jason.sourceforge.net.



The KCGP Model of Agency

Fariba Sadri' and Kostas Stathis?
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The KGP model of agency has been designed with the aim of specifying
situated agents that can

- deal with dynamic environments

- adapt to changes in their environment

- dynamically decide their goals

- plan for their goals and interleave action execution with partial planning

- make and record observations from the environment

- react to these observations, where necessary, by re-examining their goals or
adjusting their goals and plans

- communicate with other agents.

The model is highly modular and hierarchical. First there is collection of
capabilities, including planning, reactivity, goal decision, temporal reasoning and
sensing. These are then utilised within transitions that change the state of the
agent. The transitions, in turn, are regulated within dynamic context-dependent
cycle theories. There is a modular collection of knowledge bases that are used
by the capabilities and which record the observations the agent makes.

All the components of the model, including its control theory, are defined
using computational logic, some are defined using abductive logic programming,
and others, logic programming with priorities. The declarative model is equipped
with a provably correct computational model, which is implemented within what
is called the PROSOCS platform. The model has been used in applications
including combinatorial auctions and negotiation.

In this tutorial we will give an overview and demonstrate some of the main
features of the model.



Programming Rational Agent Groups using
Executable Logics

Michael Fisher

Department of Computer Science
University of Liverpool
Liverpool L69 3BX, United Kingdom
M.Fisher@csc.liv.ac.uk

Computational power is increasing, and increasingly available, for example
via the development of ubiquitous computing. Once large numbers of computa-
tional elements can communicate with each other, via wireless networks or the
World-Wide Web, then new problems arise in engineering software for such sys-
tems. By representing these computational elements as agents, we can provide a
simple and intuitive metaphor for both individual computation and that within
multi-agent systems. However, software designers need to have appropriate and
semantically clear mechanisms for controlling not only how individual agents
adapt and evolve, but also how agents interact and combine to form new sys-
tems. Without this control not only will the practical development of complex
multi-agent systems remain difficult, but agents themselves will not be trusted
for use in critical applications.

In this tutorial, I will outline our work on developing an agent programming
languages based upon executable temporal logic. In particular, I will describe:

1. the implementation of individual agents through the direct execution of a
formal description of individual (rational) agent behaviour given using a
combination of temporal logic and logics concerning belief and ability;

2. the core notion of agent groups and how such groups relate to individual
agents;

3. the ways in which (ubiquitous/pervasive) multi-agent applications might be
developed, by utilising the combination of executable logic (as in 1) and
group evolution (as in 2).

This tutorial covers work carried out over a number of years, where we have
attempted to use intuitive logical aspects to provide a simple, but effective, mech-
anism for describing agent computation. It is our assertion that computational
logic in general (and executable temporal logics in particular) can provide an ap-
propriate tool for studying not only verifiable agent descriptions, but also novel
concepts that can form the basis for the future programming of agent-based
systems.

The work presented in this tutorial can be traced back to previous work
produced with a number of co-authors on executable temporal logics [1, 2], pro-
gramming rational agents [3, 4] and programming multi-agent computation [5-8].



References

1. M. Fisher, Representing and Executing Agent-Based Systems. In Intelligent
Agents, ECAI-94 Workshop on Agent Theories, Architectures, and Languages, Am-
sterdam, The Netherlands, August 8-9, 199/, Proceedings. Volume 890 of LNAI,
Springer-Verlag, 1995.

2. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, The Imperative
Future: Principles of Executable Temporal Logics. Research Studies Press, 1996.

3. M. Fisher, Implementing BDI-like Systems by Direct Execution. In Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI),
Morgan-Kaufmann, 1997.

4. M. Fisher and C. Ghidini, Programming Resource-Bounded Deliberative Agents.
In Proceedings of the Sizteenth International Joint Conference on Artificial Intel-
ligence (IJCAI). Morgan-Kauffman, 1999.

5. M. Fisher and T. Kakoudakis, Flexible Agent Grouping in Executable Temporal
Logic. In Proceedings of the Twelfth International Symposium on Languages for
Intensional Programming (ISLIP). World Scientific Press, March 2000.

6. M. Fisher and C. Ghidini, The ABC of Rational Agent Modelling. In Proceedings
of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS). Bologna, Italy. ACM Press, July 2002.

7. M. Fisher, C. Ghidini, and B. Hirsch, Organising Logic-Based Agents. In Pro-
ceedings of the Second Goddard Workshop on Formal Approaches to Agent-Based
Systems (FAABS). Volume 2699 of LNAI, Springer-Verlag, 2003.

8. B. Hirsch, M. Fisher, C. Ghidini, P. Busetta, Organising Software in Active Envi-
ronments. In Fifth International Workshop on Computational Logic in Multi-Agent
Systems (CLIMA V), Lisbon, Portugal, September 29-30, 2004, Selected, Revised,
and Invited Papers. Volume 3487 of LNAI, Springer-Verlag, 2005.
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The definition of the agent interaction space is one of the key aspects of multi-
agent systems design. Agent interaction specification has several facets: syntax,
semantics, conformance verification and proof of properties. In open societies,
heterogenous agents can participate without showing any credentials. Access to
their internals or their knowledge bases is typically not permitted, which makes
it impossible to know a-priori whether or not agents will behave according to
the society interaction rules. On the other hand, when specifying such rules, it is
important to know what properties hold in the society when all agents comply
with them.

Social Integrity Constraints are the core element of a language proposed
within the SOCS project as a means to define interactions in open societies. The
proposed language and its abductive interpretation allows the designer to define
open, extensible and not over-constrained protocols. Along with the definition
language, the SCIFF proof-procedure and a software tool, named SOCS-SZ,
have been developed with the purposes of supporting execution-time verification
of agent behaviour with respect to the defined protocols, and proof of protocol
properties.

In this tutorial we introduce the theory and the tools (in particular SOCS-ST)
that can be used to design, define and test interaction protocols in open agent
societies. An introduction to SOCS-SZ is included in the paper “Compliance
Verification of Agent Interaction: a Logic-Based Tool”.



Norms and Institutions in Agent Societies: the
Language (C/Ct)*+

Marek J. Sergot

Department of Computing
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The action language C* of Giunchiglia, Lee, Lifschitz, McCain, and Turner
is a formalism for specifying and reasoning about the effects of actions and the
persistence (inertia) of facts over time. An action description in C* is a set of
C™T laws which define a labelled transition system of a certain kind.

(CT)™* is an extended form of CT designed for representing norms of be-
haviour and institutional aspects of (human or computer) societies. There are
two main extensions. The first is a means of expressing counts as relations be-
tween actions, also referred to as conventional generation. The second extension
is a way of specifying the permitted (acceptable, legal) states of a transition
system and its permitted (acceptable, legal) transitions. There are implementa-
tions supporting a wide range of temporal reasoning and planning tasks (based
on the Causal Calculator for C* from the University of Texas), for obtaining
event calculus like computations with C* and (CT)™* action descriptions, and
for using C* and (CT)™" with standard model checking systems for verifying
system properties expressed in temporal logics such as CTL.



Programming Multi-Agent Systems in
Qu-Prolog

Keith Clark and Silvana Zappacosta-Amboldi

Department of Computing
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{clk|sza}@doc.ic.ac.uk

Qu-Prolog is a multi-threaded and distributed version of Prolog with support
for high-level communication communication between the threads. Agents can
communicate using a thread-to-thread term messages, a publish and subscribe
event notification system, or via the the shared Prolog dynamic database. The
first two allow threads in different Qu-Prolog process any where on the internet
to communication, the last one is restricted to threads in the same process.

The tutorial will introduce the three styles of communication and illustrate
them using at least two multi-agent applications. Qu-Prolog is used at Imperial
College as the programming language for practicals in a Multi-agent systems
course. The tutorial is based on our experience of its use on the course.

An introduction to some of the features and uses of Qu-Prolog is included in
the paper at: http://www.doc.ic.ac.uk/"klc/qp.html.



Multi-Agent Systems in Logic Programming:
Challenges and Outcomes of the SOCS project
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The SOCS project is concerned with a computational logic model for the de-
scription, analysis and verification of global and open Societies Of heterogeneous
ComputeeS, where computees are computational entities, that is agents realised
in computational logic.

SOCS is funded by the European Commission under the Fifth Framework,
Future and Emerging Technologies programme, within the Global Computing
proactive initiative. The SOCS consortium is composed of six European part-
ners, based in Italy, UK, and Cyprus. These are, respectively, the universities of
Pisa, Bologna and Ferrara (Italy), Imperial College London and City University
London (UK), and Cyprus University. The project is coordinated by Imperial
College London. The project started in January 2002 and will finish in June
2005. Its aims are:

— To provide a computational logic model for the description, analysis and ver-
ification of global and open societies of heterogeneous computees, intended
as abstractions of the entities that populate open and global computing en-
vironments.

— To provide prototype implementations of computees and their societies.

— To run experiments based on various scenaria to ground and test the model.

Details of the project can be found at the project web-site: http://lia.
deis.unibo.it/research/socs/

The project aims at using Logic Programming (LP) techniques, such as Ab-
ductive Logic Programming (ALP), Constraint Logic Programming (CLP) and
Logic Programming with Priorities (LPP), all appropriately extended and inte-
grated to deal with agent problems and Global Computing challenges. We are
at the end of the project and we have so far developed an agent model and a
society model, both with computational counterparts, together with prototype
implementations of both, and we have worked on the formal specification and
verification of properties of the models and experimentation with the prototypes.
The aim of this SOCS project dissemination event is to give an overview of the
project, its main challenges and outcomes.



1 Logic Programming-based Operational Models for
Agents and Multi-Agent Systems

We will give an overview of the operational models for individual KGP agents and
for societies of agents proposed by the SOCS project. These models are heavily
based upon proof procedures for (various extensions of) logic programming. In
particular, the operational model for KGP agents relies upon CIFF, a proof
procedure for abductive logic programming with constraints, and Gorgias, for
logic programming with priorities. The operational model for agent societies
instead relies upon SCIFF, a proof procedure for abductive logic programming
with arbitrarily quantified variables, CLP constraints, dynamic event handling
and reasoning with expectations.

These procedures have been obtained by adapting and suitably extending
two existing proof procedures for logic programming, namely Fung and Kowal-
ski’s IFF procedure for abductive logic programming, for CIFF and SCIFF, and
Kakas and Toni’s argumentation-based procedure for negation as failure in logic
programming, for Gorgias.

The overall operational models are sound and (in some cases) complete with
respect to the abstract KGP model and model for societies of agents, respec-
tively, and form a solid bridge between the models and their implementations
within the PROSOCS platform. We discuss the motivations for the new proof
procedures, arising from the needs of the KGP agent model and the open so-
cieties model of Global Computing, as well as current deficiencies and possible
future improvements.

2 Formal Properties of Agents and Agent Systems

A great deal of the project activities has been devoted to formalising and study-
ing properties of agents and agent systems. The SOCS approach to properties is
formal, and it aims at exploiting the potential of the declarative programming
paradigm for giving a precise specification of properties and for allowing their
formal verification. Moreover, the double declarative and operational reading
of Computational Logic supports both an abstract description of systems and
their (expected) properties, and mechanisms to implement them. Descriptions
and mechanisms are closely related to each other so that properties enjoyed by
the models are easy to be reflected into implementations.

The kinds of properties investigated span over a relatively broad range. They
can roughly be classified into four categories: (1) properties of proof procedures
(2) properties of individual computees (3) properties of the social infrastructure,
and (4) properties related to protocol conformance. These properties help show-
ing the effectiveness of the computational logic approach in modelling computees
and societies, in the sense of facilitating formalisation of properties and predic-
tion of behaviour without the need to resort to empirical methods. They also
help exploring the consequences of our design choices.
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3 Evaluating Intelligent Systems of Reasoning Agents

The problem of evaluating a project’s outcomes is not a trivial one. We have
seen how properties can serve to draw some considerations on the effectiveness
of the SOCS approach. Indeed, the possibility to specify and verify properties,
and a direct relationship between declarative model and implementation, are
very important points in favour. However, by pursuing research on computa-
tional logic-based multi-agent systems, we situate our work at the intersection
of foundational and applied research. The broad and relatively young multi-agent
systems community has not yet reached the stage where there are universally
accepted benchmark and evaluation criteria, and it is hard to imagine that they
will be there in the near future. There exist some attempts in this direction,
like robo-cup and the trading agent competition, but they rather aim at ad-
dressing a specific problem, and do not define measures for agent autonomy,
pro-activeness, reactivity, situatedness, social abilities: all distinguishing aspects
of the agent metaphor. On the other hand, computational logic is also a broad
research area, but comparatively more focussed in terms of expected results, in
that soundness, termination, and sometimes completeness are clearly aims that
are common to most proposals in literature.

How do these two perspectives and experiences combine, when it comes to
evaluating formal, logic-based research on multi-agent systems? In the context of
the SOCS project, born in and motivated by the global computing vision of open
societies of heterogeneous agents, beside an evaluation of logic tools (declarative
models and proof-procedures) in terms of formal properties, mainly as it concerns
specification and verifiability, we considered openness and heterogeneity as two
important criteria. We did not define a measure for agent autonomy and other
aspects of agency, but we rather tried to define scenarios, where intelligent and
social behaviour is required to achieve particular goals. The performance of the
PROSOCS implementation has been thoroughly tested through specialised and
integrated experiments, in diverse settings such as combinatorial auctions and
collaborative problem solving. In this final part of the SOCS dissemination event,
we will present the project evaluation setting, and aim to foster a discussion
about logic-based multi-agent systems evaluation.
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Abstract. In open multi-agent systems agent interaction is usually ruled
by public protocols defining the rules the agents should respect in mes-
sage exchanging. The respect of such rules guarantees interoperability.
Given two agents that agree on using a certain protocol for their interac-
tion, a crucial issue (known as “a priori conformance test”) is verifying if
their interaction policies, i.e. the programs that encode their communica-
tive behavior, will actually produce interactions which are conformant to
the agreed protocol. An issue that is not always made clear in the exist-
ing proposals for conformance tests is whether the test preserves agents’
capability of interacting, besides certifying the legality of their possi-
ble conversations. This work proposes an approach to the verification
of a priori conformance, of an agent’s conversation policy to a protocol,
which is based on the theory of formal languages. The conformance test
is based on the acceptance of both the policy and the protocol by a
special finite state automaton and it guarantees the interoperability of
agents that are individually proved conformant. Many protocols used in
multi-agent systems can be expressed as finite state automata, so this
approach can be applied to a wide variety of cases with the proviso that
both the protocol specification and the protocol implementation can be
translated into finite state automata. In this sense the approach is gen-
eral. Easy applicability to the case when a logic-based language is used
to implement the policies is shown by means of a concrete example, in
which the language DyLOG, based on computational logic, is used.

1 Introduction

Multi-agent systems (MASs) often comprise heterogeneous components, that
differ in the way they represent knowledge about the world and about other
agents, as well as in the mechanisms used for reasoning about it. Protocols rule
the agents’ interaction. Therefore, they can be used to check if a given agent can,
or cannot, take part into the system. In general, based on this abstraction, open

* This research is partially supported by MIUR Cofin 2003 “Logic-based develop-
ment and verification of multi-agent systems” national project and by the European
Commission and by the Swiss Federal Office for Education and Science within the
6th Framework Programme project REWERSE number 506779.



systems can be realized, in which new agents can dynamically join the system.
The insertion of a new agent in an execution context is determined according
to some form of reasoning about its behaviour: it will be added provided that it
satisfies the body of the rules within the system, intended as a society.

In a protocol-ruled system of this kind, it is, however, not necessary to check
the interoperability (i.e. the capability of actually producing a conversation) of
the newly entered agent with the other agents in the system if, as long as the
rules are satisfied, the property is guaranteed. The problem which amounts to
verify if a given implementation (an agent interaction policy) respects a given
abstract protocol definition is known as conformance testing. A conformance
test can, then, be considered as a tool that, by verifying that agents respect a
protocol, should certify their interoperability. In this perspective, we expect that
two agents which conform to a protocol will produce a conversation, that is legal
(i.e. correct w.r.t. the protocol), when interacting with one another.

The design and implementation of interaction protocols are crucial steps in
the development of a MAS [18, 19]. Following [17], two tests must be executed
in the process of interaction protocol engineering. One is the already mentioned
conformance test, the other is the validation test, which verifies the consistency of
an abstract protocol definition w.r.t. the requirements, derived from the analysis
phase, that it should embody. In the literature validation has often been tackled
by means of model checking techniques [7,6,22], and two kinds of conformance
verifications have been studied: a priori conformance verification, and run-time
conformance verification (or compliance) [9,10,15]. If we call a conversation a
specific interaction between two agents, consisting only of communicative acts,
the first kind of conformance is a property of the implementation as a whole
—intuitively it checks if an agent will never produce conversations that violate
the abstract interaction protocol specification— while the latter is a property of
the on-going conversation, aimed at verifying if that conversation is legal.

In this work we focus on a priori conformance verification, defining a confor-
mance test, based on the acceptance, of both the agent’s policy and the public
protocol, by a special finite state automaton. Many protocols used in multi-
agent systems can be expressed as finite state automata, so this approach can
be applied to a wide variety of cases with the proviso that both the protocol
specification and the protocol implementation (policy) can be translated into
finite state automata. In this sense the approach is general.

The test that we defined guarantees agent interoperability (see Theorem 1
in Section 3). The communicative behavior of an agent (the decision of which
specific action to take) normally relies also on information like the private state
of the agent and the social commitments. We will see that our notion of confor-
mance is orthogonal to the framework in which one reasons about communica-
tion (mentalistic or social [15]). So, our approach works on sets of conversations
without caring about the information used to obtain them.

The application of our approach is particularly easy in case a logic-based
declarative language is used to implement the policies. In logic languages indeed
policies are usually expressed by Prolog-like rules, which can be easily converted
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in a formal language representation. In Section 4 we show this by means of a
concrete example where the language DyLOG [5], based on computational logic,
is used for implementing the agents’ policies. On the side of the protocol specifi-
cation languages, currently there is a great interest in using informal, graphical
languages (e.g. UML-based) for specifying protocols and in the translation of
such languages in formal languages [8, 11]. By this translation it is, in fact, pos-
sible to prove properties that the original representation does not allow. In this
context, in [4] we have shown an easy algorithm for translating AUML sequence
diagrams to finite state automata thus enabling the verification of conformance.

In [4] we already faced the problem of a priori conformance verification as a
verification of properties of formal languages, but proposing a different approach
with some limitations due to focussing on the legality issue. In fact, interpreting
(as we did) the conformance test as the verification that all the conversations,
allowed by an agent’s policy, are also possible according to the protocol speci-
fication, does not entail interoperability. The next section is devoted to explain
the expected relations among conformance and the crucial interoperability issue.

2 Conformant and interoperable agents

A conversation policy is a program that defines the communicative behavior of
a specific agent, implemented in some programming language. A conversation
protocol specifies the desired communicative behavior of a set of agents and it
can be specified by means of many formal tools, such as (but not limited to)
Petri nets, AUML sequence diagrams, automata.

In this work we face the problem of conformance verification and interpret
a priori conformance as a property that relates two formal languages, the lan-
guage of the conversations allowed by the conversation policy of an agent, and
the language of the conversations allowed by the specification of a communi-
cation protocol. They will respectively be denoted by L(p?fng) and L(pspec),
where spec is the specification language, lang is the language in which the pol-
icy executed by agent ag is written, and p is the name of the policy or of the
protocol at issue. The assumption that we make throughout this paper is that
the two languages are regular sets. This choice restricts the kinds of protocols to
which our proposal can be applied, because finite state automata cannot repre-
sent concurrent operations, however, it is still significant because a wide family
of protocols (and policies) of practical use can be expressed in a way that can
be mapped onto such automata. Moreover, the use of regular sets ensures de-
cidability. Another assumption is that the conversation protocol encompasses
only two agents. The extension to a greater number of agents will be tackled as
future work. Notice that when the MAS is heterogeneous, the agents might be
implemented in different languages.

A conversation protocol specifies the sequences of speech acts that can pos-
sibly be exchanged by the involved agents, and that we consider as legal. In
agent languages that account for communication, speech acts often have the
form m(ags, agr, 1), where m is the performative, ags (sender) and ag, (receiver)
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are two agents and [ is the message content. It is not restrictive to assume that
speech acts have this form and to assume that conversations are sequences of
speech acts of this form. Depending on the semantics of the speech acts, the
conversation will take place in a framework based either on the mentalistic or on
the social state approach [12,21,14]. The speech acts semantics, actually, does
not play a part in our proposal, which fits both the approaches.

In the following analysis it is important to distinguish the incoming messages,
w.r.t. a specific agent ag of the MAS, from the messages uttered by it. We
respectively denote the former, where ag plays the role of the receiver, by m(ag),
and the latter, where ag is the sender, by and m(ag). We will also simply write
m (incoming message) and ™M (outgoing message) when the agent that receives
or utters the message is clear from the context. Notice that these are just short
notations, that underline the role of a given agent from the individual perspective
of that agent. So, for instance, m(ags, agy,, [) is written as m(&g;) from the point
of view of ag,, and m(ags) from the point of view of the sender but the three
notions denote the same object.

A conversation, denoted by o, is a sequence of speech acts that represents a
dialogue of a set of agents. We say that a conversation is legal w.r.t. a protocol
specification if it respects the specifications given by the protocol. Since L(pspec)
is the set of all the legal conversations according to p, the definition is as follows.

Definition 1 (Legal conversation). We say that a conversation o is legal
w.r.t. a protocol specification pspec when o € L(Dspec)-

We are now in position to explain, with the help of a few simple examples,
the intuition behind the terms “conformance” and “interoperability”, that we
will, then, formalize.

Interoperability is the capability of an agent of actually producing a con-
versation when interacting with another.

Often the introduction of a new agent in an execution context is determined ac-
cording to some form of reasoning about its behaviour: it will be added provided
that it satisfies the body of the rules within the system, intended as a society.
As long as the rules are satisfied, the property is guaranteed and it will not be
necessary to verify interoperability with the single components of the system.
This can be done by checking the communicative behavior of the agent against
the rules of the society, i.e. against an interaction protocol. Such a proof is known
as conformance test. Intuitively, this test must guarantee the following definition
of interoperability. This work focuses on it.

We expect that two agents, that conform to a protocol, will produce a
legal conversation, when interacting with one another.

Let us begin with considering the following case: suppose that the communicative
behavior of the agent ag is defined by a policy that accounts for two conversations
{mi(ag)ma(ag), mi(ag)ms(ag)}. This means that after uttering a message my,
the agent expects one of the two messages msy or mg. Let us also suppose that
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the protocol specification only allows the first conversation, i.e. that the only
possible incoming message is mso. Is the policy conformant? According to Def.
1 the answer should be no, because the policy allows an illegal conversation.
Nevertheless, when the agent will interact with another agent that is conformant
to the protocol, the message ms will never be received because the other agent
will never utter it. So, in this case, we would like the a priori conformance test
to accept the policy as conformant to the specification.

Talking about incoming messages, let us now consider the symmetric case, in
which the protocol specification states that after the agent ag has uttered mq, the
other agent can alternatively answer mo or my (agent ag’s policy, instead, is the
same as above). In this case, the expectation is that ag’s policy is not conformant
because, according to the protocol, there is a possible legal conversation (the one
with answer my) that can be enacted by the interlocutor (which is not under the
control of ag), which, however, ag cannot handle. So it does not comply to the
specifications.

As a first observation we expect the policy to be able to handle any in-
coming message, foreseen by the protocol, and we ignore those cases in
which the policy foresees an incoming message that is not supposed to
be received at that point of the conversation, according to the protocol
specification.

Let us, now, suppose that agent ag’s policy can produce the following conversa-
tions {m1(&g)ma(ag), m1(@g)ms(ag)} and that the set of conversations allowed
by the protocol specification is {m;(&g)m2(ag)}. Trivially, this policy is not con-
formant to the protocol because ag can send a message (mg) that cannot be
handled by any interlocutor that is conformant to the protocol.

The second observation is that we expect a policy to never utter a message
that, according to the specification, is not supposed to be uttered at that
point of the conversation.

Instead, in the symmetric case in which the policy contains only the conversation
{m1(Gg)mz(@g)} while the protocol states that ag can answer to m; alternatively
by uttering ms or mg, conformance holds. The reason is that at any point of its
conversations the agent will always utter legal messages. The restriction of the set
of possible alternatives (w.r.t. the protocol) depends on the agent implementor’s
own criteria. However, the agent must foresee at least one of such alternatives
otherwise the conversation will be interrupted. Trivially, the case in which the
policy contains only the conversation {m1(&g)} is not conformant.

The third observation is that we expect that a policy always allows the
agent to utter one of the messages foreseen by the protocol at every point
of the possible conversations. However, it is not necessary that a policy
envisions all the possible alternatives.

To summarize, at every point of a conversation, we expect that a conformant
policy never utters speech acts that are not expected, according to the proto-
col, and we also expect it to be able to handle any message that can possibly
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be received, once again according to the protocol. However, the policy is not
obliged to foresee (at every point of conversation) an outgoing message for every
alternative included in the protocol (but it must foresee at least one of them).
Incoming and outgoing messages are, therefore, not handled in the same way.
These expectations are motivated by the desire to define a minimal set of con-
ditions which guarantee the construction of a conformance test that guarantess
the interoperability of agents. Let us recall that one of the aims (often implicit)
of conformance is, indeed, interoperability, although sometimes research on this
topic restricts its focus to the legality issues. We claim —and we will show— that
two agents that respect this minimal set of conditions (w.r.t. an agreed protocol)
will actually be able to interact, respecting at the same time the protocol. The
relevant point is that this certification is a property that can be checked on the
single agents, rather than on the agent society. This is interesting in application
domains (e.g. web services) with a highly dynamic nature, in which agents are
searched for and composed at the moment in which specific needs arise.

3 Conformance test

In order to decide if a policy is conformant to a protocol specification, it is not
sufficient to perform an inclusion test; instead, as we have intuitively shown
by means of the above examples, it is necessary to prove mutual properties
of both L(p;?, g) and L(pspec). The method that we propose, for proving such
properties, consists in verifying that both languages are recognized by a special
finite state automaton, whose construction we are now going to explain. Such an
automaton is based on the automaton that accepts the intersection of the two
languages. All the conversations that belong to the intersection are certainly
legal. This, however, is not sufficient, because there are further conditions to
consider, for instance there are conversations that we mean to allow but that
do not belong to the intersection. In other words, the “intersection automaton”
does not capture all the expectations reported in Section 2. We will extend
this automaton in such a way that it will accept the converations in which the
agent expects messages that are not foreseen by the specification as well as those
which include outgoing messages that are not envisioned by the policy. On the
other hand, the automaton will not accept conversations that include incoming
messages that are not expected by the policy nor it will accept conversations
that include outgoing messages, that are not envisioned by the protocol (see
Fig. 1).

3.1 The automaton M on s

If L(p}9, ) and L(pspec) are regular, they are accepted by two (deterministic)
finite automata, that we respectively denote by M (p; o) and M (pspec), that we
can assume as having the same alphabet (see [16]). An automaton is a five-tuple
(Q,X,0,q0, F), where @ is a finite set of states, X is a finite input alphabet,

go € @ is the initial state, F' C @ is the set of final states, and ¢ is a transition
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function mapping @ x X to Q. In a finite automaton we can always classify
states in two categories: alive states, that lie on a path from the initial state to
a final state, and dead states, the other ones. Intuitively, alive states accept the
language of the prefixes of the strings accepted by the automaton.

For reasons that will be made clear shortly, we request the two automata to
show the following property: the edges that lead to the same state must all be
labelled either by incoming messages or by outgoing messages w.r.t. ag.

Definition 2 (IO-automaton). Given an automaton M = (Q, X, 5, qo, F), let
E, = {m | 6(p,m) = q} for ¢ € Q. We say that M is an 10-automaton iff
for every q € Q, E, alternatively consists only of incoming or only of outgoing
messages w.r.t. an agent ag.

Notice that an automaton that does not show this property can always be trans-
formed so as to satisfy it, in linear time w.r.t. the number of states, by splitting
those states that do not satisfy the property. We will denote a state ¢ that is
reached only by incoming messages by the notation ‘G (we will call it an I-state),
and a state g that is reached only by outgoing messages by ¢ (an O-state).

Finally, let us denote by M (p;¥, g,pspec) the deterministic finite automa-
ton that accepts the language L(pjy,,) N L(Pspec)- It is defined as follows. Let
M(pifng) be the automaton (QF, X, 67 ¢F', FF) and M (pspec) the automaton
(@, 2,8% 45, F5):

Mx<p?(fngvpspec) = (QP X QS,E, 0, [Q(I)D,qg]yFP X FS)

where for all ¢* in Q, ¢° in Q%, and m in X, 6([¢¥, ¢°],m) = [6F (¢©,m), 5% (¢%, m)].
We will briefly denote this automaton by M*.

Notice that all the conversations that are accepted by M* are surely con-
formant (Def. 1). For the so built automaton, it is easy to prove the following

property.

Proposition 1. M*(p;, . Pspec) is an I0-automaton if M (p;,,,) and M (pspec)
are two 10-automata.

Definition 3 (Automaton M,,,f). The finite state automaton Mconf(pffnq,
Dspec) 45 built by applying the following steps to Mx(plafng, Dspec) until none is
applicable:

— = — “—
(a) if T = [aF,d®] in Q is an I-state, such that a¥ is an alive state and d° is
a dead state, we set §('q,m) = ‘g for every m in X, and we put ‘g in F;
“— —

5 P S
| in Q is an I-state, such that d* is dead and a” is alive, we

(b) if g =1d",a
set 6(°q,m) = G for every m in X, without modifying F';

(c) if ¢ = (?,C?] in Q is an O-state, such that LF; is alive and d? 1s dead, we
set 6(q¢,m) ="q for every m in X (without modifying F );

(d) if ¢ =1[d ,CF] in Q is an O-state, such that d" is dead and d—S> 1s alive, we
set 6(7,m) =7 for every m in X, and we put ¢ in F.
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Fig. 1. A general schema of the Mo,y automaton. From bottom-right, anticlockwise,
cases (a), (b), (¢), and (d).

These four transformation rules can, intuitively, be explained as follows. Rule
(a) handles the case in which, at a certain point of the conversation, according
to the policy it is possible to receive a message that, instead, cannot be received
according to the specification (it is the case of message m; in Fig. 1). Actu-
ally, if the agent will interact with another agent that respects the protocol, this
message can never be received, so we can ignore the paths generated by the
policy from the message at issue onwards. Since this case does not compromise
conformance, we want our automaton to accept all these strings. For this reason
we set the state as final. Rule (b) handles the symmetric case (Fig. 1, message
M 4), in which at a certain point of the conversation it is possible, according to
the specification, to receive a message, that is not accounted for by the imple-
mentation. In this case the state at issue is turned into a trap state (a state that
is not final and that has no transition to a different state); by doing so, all the
conversations that are foreseen by the specification from that point onwards will
not be accepted by Mconr. Rule (c) handles the cases in which a message can
possibly be uttered by the agent, according to the policy, but it is not possible
according to the specification (Fig. 1, message ™3). In this case, the policy is
not conformant, so we transform the current state in a trap state. By doing so,
part of the conversations possibly generated by the policy will not be accepted
by the automaton. The symmetric case (d) (Fig. 1, message 2), instead, does
not prevent conformance, in fact, an agent is free not to utter a message fore-
seen by the protocol. However, the conversations that can be generated from
that point according to the specification are to be accepted as well. For this
reason the state is turned into an accepting looping state. Finally, since a policy
is expected to envision at least one of the messages forseen by the protocol, we
require that for those states ¢° € Q°, that emit edges labelled with outgoing
messages, w.r.t. ag, which are part of strings accepted by M (pspec) (legal con-
versations according to the protocol specification), there is at least one m(ag)
such that 0°(¢%, m(ag)) = p® and p® is an alive state. We will denote by Mess,s
the set of all such messages. In this case, we say the automaton is complete.

19



Definition 4 (Complete automaton). We say that the automaton Meopny is
complete iff for all states of form [q¥,q%] of Mcony, such that Mess,s # 0, there
is a message m(ag) € Mess,s such that §([q”,q°],m(ag)’) is a state of Mcons
composed of two alive states.

One may wonder if the application of rules (b) and (c) could prevent the
reachability of states, that have been set as accepting states by the other two
rules. Notice that their application, cannot prevent the reachability of alive-alive
accepting states, i.e. those that accept the strings belonging to the intersection of
the two languages, because all the four rules only work on dead states. If a state
has been set as a trap state (either by rule (b) or (c)), whatever conversation is
possibly generated after it by the policy is illegal w.r.t. the specification. So it is
correct that the automaton is modified in such a way that the policy language
is not accepted by it and that the final state cannot be reached any more.

3.2 Conformance and interoperability

We can now discuss how to check that an agent conforms to a given protocol.
The following is our definition of conformance test. It guarantees the expectations
that we have explained by examples in Section 2.

ag .
lang S conformant to a

protocol specification pspec tff the automaton Mconf(pifng,pspec) is complete and
it accepts both languages L(pyy, ) and L(pspec)-

Definition 5 (Policy conformance test). A policy p

We are now in position to state that a policy that passes the above test can
carry on any conformant conversation it is involved in.

Proposition 2. Given a policy pflfng that is conformant to a protocol specifi-

cation Pspec, according to Def. 5, for every prefix o’ that is common to the two
languages L(pspec) and L(plufng), there is a conversation o = o'c” such that o
is in the intersection of L(pyy,,) and L(Pspec).

Proof. (sketch) If o’ is a common prefix, then it leads to a state of the automaton
Meonys of the kind [a”,a®] (see Figure 1). If there is a conversation o = o’¢”

in L(p}? q), then this must be a legal conversation. In fact, let us consider the
general schema of M,y in Figure 1. If pj¥ is conformant, L(p;,,) is accepted

by Mcons. Then, by construction Mc,,; does not contain any state [57; ,d? ]

— —
due to illegal messages uttered by the agent nor it contains any state [dP ,a’ ]
due to incoming messages that are not accounted for by the policy. Obviously,
no conversation o in L(p;7 ) can be accepted by states of the kind [d",a”]
because the agent does not utter the messages required to reach such states.
Finally, no conversation produced by the agent will be accepted by states of the

=

kind [af, d®] if the interlocutor is also conformant to the protocol, because the
latter cannot utter illegal messages. Now, at every step after the state [af, a”]
mentioned above, due to policy conformance all the incoming messages (w.r.t.
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the agent) must be foreseen by the policy. Moreover, due to the completeness of
Mony, in the case of outgoing messages, the policy must foresee at least one of
them. Therefore, from [a”’, a®] it is possible to perform one more common step.
q.e.d.

Notice that the intersection of L(p;? g) and L(pspec) cannot be empty because of
policy conformance, and also that Proposition 2 does not entail that the two lan-
guages coincide (i.e. the policy is not necessarily a full implementation of the pro-
tocol). As a consequence, given that the conversation policies of two agents ag;
and age, playing the different roles of an interaction protocol pgpec, are confor-
mant to the specification according to Def. 5, and denoting by I the intersection
ﬁgil’QL(pi; gi), we can prove ag; and ago interoperability. The demonstration
is similar to the previous one. Roughly, it is immediate to prove that every pre-
fix, that is common to the two policies, also belongs to the protocol, then, by
performing reasoning steps that are analogous to the previous demonstration,
it is possible to prove that a common legal conversation must exist when both
policies satisfy the conformance test given by Def. 5.

Theorem 1 (Interoperability). For every prefiz o’ that is common to the two
languages L(p;3,,.) and L(p}yy:,.), there is a conversation o = o'o” such that
oel.

Starting from regular languages, all the steps that we have described that lead
to the construction of Mc,,¢ and allow the verification of policy conformance,
are decidable and the following theorem holds.

Theorem 2. Policy conformance is decidable when L(py7, ) and L(pspec) are
reqular languages. ‘

Notice that if we do not require Mo, s to be complete, we could not guarantee

the third expectation reported in Section 2, which requires that, at every state
of the conversation, if a role is supposed to utter a message out of a set of
possibilities, the agent’s policy envisions at least one of them. Thus, we could
not guarantee that the two agents, playing the two roles of a same protocol,
would be able to lead to an end their conversations. On the other hand, the
definition would be sufficient to satisfy the first two expectations. In other words,
we can prove that whatever conversation is in the intersection I, it is legal, but
we cannot prove that I is not empty.
Proposition 3. All the conversations that a policy p?(fng, that is conformant
according to Def. 5 (without requiring Mcony to be complete) to a protocol spec-
ification Pspec, will produce when it interacts with any agent that is equally con-
formant to pspec, are always legal w.r.t. this protocol, according to Def. 1.

4 The DyLOG language: a case study

In this section we show how the presented approach particularly fits logic lan-
guages, using as a case of study the DyLOG language [5], previously developed
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in our group. The choice is due to the fact that this language explicitly supplies
the tools for representing communication protocols and that we have already
presented an algorithm for turning a DyLOG program in a regular grammar
(therefore, into a finite state automaton) [4]. This is, however, just an example.
The same approach could be applied to other logic languages. For this reason
we will confine its description to the strict necessary.

DyLOG [5] is a logic programming language for modeling rational agents,
based upon a modal logic of actions and mental attitudes, in which modalities
represent actions as well as beliefs that are in the agent’s mental state. It accounts
both for atomic and complex actions, or procedures, for specifying the agent
behavior. DyLOG agents can be provided with a communication kit that specifies
their communicative behavior [3]. In DyLOG conversation policies are represented
as procedures that compose speech acts (described in terms of their preconditions
and effects on the beliefs in the agent’s mental state). They specify the agent
communicative behavior and are expressed as prolog-like procedures of form:

Po 1S P1;p2;.. .5 Pm

where pg is a procedure name, the p;’s in the body are procedure names, atomic
actions, or test actions, and ;’ is the sequencing operator.

Besides speech acts, protocols can also contain get message actions, used
to read incoming communications. From the perspective of an agent, expect-
ing a message corresponds to a query for an external input, thus it is natural
to interpret this kind of actions as a special case of sensing actions. As such,
their outcome, though belonging to a predefined set of alternatives, cannot be
predicted before the execution. A get_message action is defined as:

get_message(ag;, ag;,!) is
speech_act, (ag;, ag;,l) or ...or speech_act, (ag;, ag;, 1)

On the right hand side the finite set of alternative incoming messages that the
agent ag; expects from the agent ag; in the context of a given conversation. The
information that is actually received is obtained by looking at the effects that
occurred on ag;’s mental state.

From the specifications of the interaction protocols and of the relevant speech
acts contained in the domain description, it is possible to trigger a planning ac-
tivity by executing existential queries of form Fs after pi;ps;...;pm, that intu-
itively amounts to determine if there is a possible execution of the enumerated
actions after which the condition Fs holds. If the answer is positive, a conditional
plan is returned. Queries of this kind can be given an answer by a goal-directed
proof procedure that is described in [3].

The example that we consider involves a reactive agent. The program of its
interlocutor is not given: we will suppose that it adheres to the public protocol
specification against which we will check our agent’s conformance. The example
rephrases one taken from the literature, that has been used in other proposals
(e.g. [13]) and, thus, allows a better comprehension as well as comparison. We
just set the example in a realistic context. The agent is a web service [2] that
answers queries about the movies that are played. Its interlocutor is the requester
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Fig. 2. AUML sequence diagram.

of information (that we do not detail supposing that it respects the agreed
protocol). This protocol is described in Fig. 2 as an AUML sequence diagram
[20]. Tt is very simple: the agent that plays the role “cinema” waits for a request
from another agent (if a certain movie is played), then, it can alternatively
send the requested information (yes or no) or refuse to supply information; the
protocol is ended by an acknowledgement message from the customer to the
cinema. Hereafter, we consider the implementation of the web service of a specific
cinema, written as a DyLOG communication policy. This program has a different
aim: it allows answering to a sequence of information requests from the same
customer and it never refuses an answer.

(a) get_info_movie(cine, customer) is
get_request(cine, customer, available(Movie));
send_answer(cine, customer, available(Movie));
get_info_movie(cine, customer)

(b) get_info_movie(cine, customer) is get_ack(cine, customer)

(c) send_answer(cine, customer, available(Movie)) is
Beimemagyailable(Movie)?; inform(cine, customer, available( M ovie))
(d) send_answer(cine, customer, available(Movie)) is
—Beinemagyailable( Movie)?; inform(cine, customer, ~available(Movie))

(e) get_request(cine, customer, available(Movie)) is
request(customer, cine, available( M ovie)
(f) get-ack(cine, customer, ack) is inform(customer, cine, ack)

The question that we try to answer is whether this policy is conformant
to the given protocol, and we will discuss whether another agent that plays
as a customer and that is proved conformant to the protocol will actually be
able to interoperate with this implementation of the cinema service. For what
concerns the AUML sequence diagram, we have proved in [4] that diagrams
containing only message, alternative, loop, exit, and reference to a subprotocol
operators can be represented as a right-linear grammar, that generates a regular
language. The automaton reported in Fig. 3(b) is obtained straightforwardly
from this grammar. For what concerns the implementation, by applying the
results reported in [4] it is possible to turn a DyLOG program in a context-free
language. This grammar captures the structure of the possible conversations
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disregarding the semantics of the speech acts. When we have only right-recursion
in the program, then, the obtained grammar is right-linear. So also in this case
a regular language is obtained, hence the automaton in Fig. 3(a). Notice that all
the three automata are represented from the perspective of agent cine, so all the
short notation for the messages are to be interpreted as incoming or outgoing
messages w.r.t. this agent.

inform(cine)

request(&ine) K inform(cine) request(cine) fuse(cine) \inform(cme)
reruse(cine

@ inform(cine)

(b)

eskiyles

a8, 451 refuse(cine) [dP, ¢S] request(&7e)
request
N inform(cine) inform(cine)
—
inform (cine) P dS)

@ laF, a7 ¢}, a5) 4}, a5

()

Fig. 3. (a) Policy of agent cine; (b) protocol specification; (¢) Mcons automaton. Only
the part relevant to the discussion is shown.

The protocol allows only two conversations between cine and customer (the
content of the message is not relevant in this example, so we skip it): request(cus-
tomer, cine) inform(cine, customer) inform(customer, cine) and request(customer,
cine) refuse(cine, customer) inform(customer, cine). Let us denote this protocol
by get_info_movie ;75 (AUML is the specification language).

Let us now consider an agent (cine), that is supposed to play as cinena.
This agent’s policy is described by the above DyLOG program. The agent has a
reactive behavior, that depends on the message that it receives, and its policy
allows an infinite number of conversations of any length. Let us denote this
language by get,info,movie%ZiOG. In general, it allows all the conversations that
begin with a (possibly empty) series of exchanges of kind request(%) followed
by inform(cine), concluded by a message of kind inform (cine).

To verify its conformance to the protocol, and then state its interoperabil-
ity with other agents that respect such protocol, we need to build the My,
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automaton for the policy of cine and the protocol specification. For brevity, we
skip its construction steps and directly report M on s in Fig. 3(c).

Let us now analyse Mo, ¢ for answering our queries. Trivially, the automaton
is complete and it accepts both languages (of the policy and of the specification),
therefore, get,info,moviecDiZZOG is policy conformant to get_info_movie 47,7, More-
over, when the agent interacts with another agent customer whose policy is con-
formant to get_info_movie 45, the messages request(cine) and inform(cine) will
not be received by cine in all the possible states it expects them. The reason is
simple: for receiving them it is necessary that the interlocutor utters them, but
by definition (it is conformant) it will not. The fact that refuse(cine) is never
uttered by cine does not compromise conformance.

5 Conclusions and related work

In this work we propose an approach to the verification of the conformance of
an agent’s conversation policy to a public conversation protocol, which is based
on the theory of formal languages. Differently than works like [1], where the
compliance of the agents’ communicative behavior to the protocol is verified at
run-time, we tackled the verification of a priori conformance, a property of the
policy as a whole and not of the on-going conversation only.

This problem has been studied by other researchers, the most relevant anal-
ysis probably being the one by Endriss et al. and reported in [10]. Here, the
problem was faced in a logic framework; the authors introduce three degrees
of conformance, namely weak, exhaustive, and robust conformance. An agent is
weakly conformant to a protocol iff it never utters any dialogue move which is
not a legal continuation (w.r.t. the protocol) of any state of the dialogue the
agent might be in. It is ezhaustively conformant to a protocol iff it is weakly
conformant to it and, for every received legal input, it will utter one of the
expected dialogue moves. It is robustly conformant iff it is exhaustively confor-
mant and for any illegal input move received it will utter a special dialogue move
(such as not-understood) indicating this violation. Under the assumption that
in their conversations the agents strictly alternate in uttering messages (ag; tells
something to ags which answers to ag; and so on), Endriss and collegues show
that by their approach it is possible to prove weak conformance in the case of
logic-based agents and shallow protocols !.

Our Policy conformance (Def. 5) guarantees that an agent, at any point of
its conversations, can only utter messages which are legal w.r.t. the protocol,
because of the Mcon¢ construction step, given by rule (c). In this respect it
entails weak conformance [10], however, our notion of conformance differs from
it because it also guarantees that whatever incoming message the agent may
receive, in any conversation context, its policy will be able to handle it.

The second very important property that is guaranteed by our proposal is
that, given two policies each of which is conformant to a protocol specification,

L A protocol is shallow when the current state is sufficient to decide the next action
to perform. This is not a restriction.
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their interoperability is guaranteed. In other words, we captured the expectation
that conformance, a property of the single policy w.r.t. the public protocol,
should in some way guarantee agents (legal) interoperability. Interoperability is
not mentioned by Endriss et al., who do not formally prove that it is entailed
by (all or some of) their three definitions.

Moreover, we do not limit in any way the structure of the conversations
(in particular, we do not require a strict alternation of the uttering agents)
nor we focus on a specific class of implementation or specification languages.
One further characteristic is that, according to Def. 5, a policy may also expect
incoming messages, that are not expected by the protocol specification, for this
does not prevent the correct interaction with another conformant agent, and it
is not requested to implement a whole set of alternative outgoing messages that
are considered possible by the protocol.

This work is, actually, a deep revision of the work that the authors presented
at [4], where the verification of a priori conformance was faced only in the specific
case in which DyLOG [5] is used as the policy implementation language and
AUML [20] is used as the protocol specification language. Basically, in that work
the idea was to turn the problem into a problem of formal language inclusion.
The two considered languages are the set of all the possible conversations foreseen
by the protocol specification, let us denote it by L(pavamr), and the set of all
the possible conversations according to the policy of agent ag, let us denote it by
L(nglo g). The conformance property could then be expressed as the following
inclusion: L(pgy,,) © L(pavmr). The current proposal is more general than
the one in [4], being independent from the implementation and specification
languages. Moreover, as we have explained in the introduction, the interpretation
of conformance as an inclusion test is too restrictive, on a hand, and not sufficient
to express all the desiderata connected to this term, which are, instead, well-
captured by our definitions of policy conformance.

Finally, to the best of our knowledge, in those works that address the prob-
lem of verifying the conformance in systems of communicating agents by using
model checking techniques (e.g. [13]), the issue of interoperability is not tackled
or, at least, this does not clearly emerge. For instance, Giordano, Martelli and
Schwind [13] based their approach on the use of a dynamic linear time logic.
Protocols are specified, according to a social approach, by means of temporal
constraints representing permissions and commitments. Following [15] the paper
shows how to prove that an agent is compliant with a protocol, given the program
executed by the agent, by assuming that all other agents participating in the
conversation are compliant with the protocol, i.e. they respect their permissions
and commitments. However, this approach does not guarantee interoperability.
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Abstract. In complex multi agent systems, the agents may be hetero-
geneous and possibly designed by different programmers. Thus, the im-
portance of defining a standard framework for agent communication lan-
guages (ACL) with a clear semantics has been widely recognized. The
semantics should meet two important objectives: verifiability and flez-
ibility. Classical proposals (mentalistic semantics and social semantics)
fail to meet these objectives.

In this paper we propose a semantics for ACL which is both verifiable
and flexible. That semantics is social in nature since it is based on com-
mitments. Two kinds of commitments can be distinguished: i) the com-
mitments made by the agent itself during the dialogue such as promises,
and ii) the commitments made by the others to the agent such as requests
or questions. To these commitments, we associate two kinds of penalties
for sanctioning the agents which do not respect its commitments. The
first kind of penalty ensures that the agent is honest whereas the second
kind of penalty ensures that the agent is cooperative. These penalties
make the semantics verifiable.

Moreover, our semantics is flexible since it is not given on the basis
of particular speech acts, but on the well-known categories of speech
acts identified by Searle in [11,12]. This makes it more general than the
existing ones.

Key words: Agent Communication Languages, Commitment, Penalties.

1 Introduction

When building multi-agent systems, we take for granted the fact that the agents
which make up the system will need to communicate and to engage in the dif-
ferent types of dialogue identified by Walton and Krabbe in [15], using a com-
munication language (ACL).

The definition of an ACL from the syntactic point of view (the different speech
acts' that agents can perform during a dialogue) poses no problems. The sit-
uation is different when semantics is taken into account. Any communication

! The speech acts are also called elsewhere illocutionary acts or performatives.



language must have a well-defined semantics. Given that agents in a multi-agent
system may be independently designed by different programmers, a clear un-
derstanding of semantics is essential. Moreover, the semantics should meet two
important properties: verifiability and flexibility.

Although a number of agent communication languages have been developed, ob-
taining a suitable formal semantics for ACLs which satisfies the above objectives
remains one of the greatest challenges of multi-agent theory.

There are mainly two categories of semantics: the mentalistics semantics and the
social ones. The mentalistic semantics, used in KQML [7] and FIPA [8], is based
on a notion of speech act close to the concept of illocutionary act as developed
in speech act theory [4,12]. The basic idea behind this semantics is to define
the conditions under which a given speech act can be played. Unfortunately,
the conditions are based on the mental states of the agents and this makes the
semantics not verifiable since one cannot access to those mental states to check
whether the conditions are really satisfied or not. Consequently, such category
of approaches violates one of the important properties of a semantics.

In the second category of semantics, called social and developed in [5,13,14],
primacy is given to the interactions among the agents. The semantics is based on
social commitments brought about by performing a speech act. For example, by
affirming a data, the agent commits on the truth of that data. After a promise,
the agent is committed carrying it out. There are several weak points of this
approach and the most relevant one is the fact that the concept of commitment
itself is ambiguous and its semantics is not clear. According to the performa-
tive act, the semantics of the commitment differs. (See section 5 for more details)

Another limitation of both approaches is the fact that they are neither modular
nor general. Since they are defined on particular speech acts, if a new speech act
is needed for a particular dialogue, then the semantics should be extended.

Our aim is to define a semantics which prevents the shortcomings of the ex-
isting approaches while keeping their benefits. Thus, we propose a semantics
which satisfies the two main properties. Our approach is social in nature since
it is based on the notion of commitments. An agent may have two kinds of
commitments:

1. The commitments made by the agent itself during the dialogue such as
promises and that it should respect. Such commitments allow the evalua-
tion of the degree of honesty of the agent. Indeed, an agent which respects
its commitments is said honest.

2. The commitments for replying to requests made by the other agents. For
instance if the agent receives a question from another agent, then it should
answer. Such commitments ensures the cooperativity of the agent.

From a syntactic point of view, these commitments are modelled via a notion of
commitment store as originally defined by MacKenzie in [9]. Indeed, each agent
is supposed to be equipped with a commitment store which will keep track of the
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different commitments of the agent. These stores are accessible for all the agents.

The semantics of a commitment is unique and is given by the sanction, called
penalty, associated to a commitment in case it is not respected by the agent.

Another interesting feature of our semantics is the fact that it is defined on
the well-known categories of speech acts defined by Searle in [11,12]. Indeed,
Searle has defined five categories of performatives: the assertives, the directives,
the commissives and finally the ezpressives. We will show that we can define
a semantics for each category without worrying about the different speech acts
it may contain. This makes our semantics flexible and more general than the
existing ones.

The proposed semantics is also verifiable since the penalty associated to a move
is computed directly from its category and the agent commitment store which
is visible to all agents; so there is no need to know what the agent really be-
lieves, only the category of the moves and previous moves are taken into account.

The paper is organized as follows: Section 2 introduces the logical language
that will be used throughout the paper. In section 3 we present the basic con-
cepts of our semantics. In particular, we define the two kinds of commitments
of an agents as well as the two corresponding penalties. In section 4, we define
the semantics of the four categories of speech acts defined by Searle (we do not
consider the expressive category). Section 5 compares our approach to existing
semantics and finally, section 6 concludes with some remarks and perspectives.

2 Background

In this section we start by presenting the logical language which will be used
throughout this paper. We will distinguish among action variables (AV) and
non-actions variables (NAV). AV and N AV are supposed to be disjoint (i.e.
AV N NAY = @).

L will denote a propositional language built from AV U N AV. I+ denotes classi-
cal inference and = denotes logical equivalence.

Arg(L) will denote the set of all the arguments that can be constructed from
L. An argument is a pair (I',¢) where I' is a set of formulas of £, called the
support of the argument and ¢ € L is its conclusion. In [6], Dung has presented
a powerful argumentation framework which takes as input a set of arguments
and the different conflicts which may exist between them, and returns among all
the arguments the “good” ones, called the acceptable arguments.

Let A = {a1,...,a,} denote the set of agents. A communication language is
based on a set of speech acts. In what follows, S denotes the set of speech acts
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of a given communication language. In [2], a communication language has been
defined using the following set of speech acts: {Question, Challenge, Assert,
Accept, Refuse, Request, Promise, Retract, Argue }. Assert allows the ex-
change of information such as “the weather is beautiful” and “It is my intention
to hang a picture”. Request is invoked when an agent cannot, or prefer not to,
achieve its intentions alone. The proposition requested differs from an asserted
proposition in that it cannot be proved true or false. The decision on whether
to accept it or not hinges upon the relation it has to the agent’s intentions. An
agent will make a Promise when it needs to request something from another,
and has something it doesn’t need which can offer in return. In replying to an
assertion, a request or a promise, an agent can accept, refuse or ask a question
such as ”is it the case that p is true ?”. Another kind of question is called a chal-
lenge. It allows an agent to ask another agent why it has asserted a proposition
or requested something, for example “why newspapers can’t publish the infor-
mation X?”. The answer to a challenge should be an argument. Argue allows
agents to exchange arguments, and Retract allows them to retract propositions
previously asserted or requested.

In [11,12], Searle has identified five categories of speech acts according to what
he calls their illocutionary purpose, their psychological direction to the world,
their expressed state, and their propositional content. The five categories are as
follows:

Assertive speech acts: The speaker claims that some proposition is true. This
category contains speech acts like “inform” or “assert”. For instance, Inform:
the sky is blue or Inform: it is my intention to hang a mirror. In what follows,
we will refer to the set of all speech acts of this category by Sj.

Directive speech acts: The speaker attempts to get the hearer to do some-
thing. This category includes speech acts like “Request”, “Question” and
“Challenge”. For instance, Request: clean your room/!, Question: is p true. In
what follows, we will refer to the set of all speech acts of this category by
So.

Commissive speech acts: The speaker commits to some future course of ac-
tion. An example of a commissive speech act is “promise”, for instance
Promise: I will do it. In what follows, we will refer to the set of all speech
acts of this category by Ss.

Expressive speech acts: The speaker expresses some psychological state. For
instance, an agent can say Im sorry.

Declarative speech acts: The speaker brings about a different state of the
world. For instance, “Propose”, “Accept”’, “Refuse”, “Retract” are declar-
atives. In what follows, we will refer to the set of all speech acts of this
category by Sy.

In this paper, we are more concerned with setting a semantics for dialogues
between artificial agents. Thus, the category of expressive speech acts will not
be considered here.
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S1, 859,83, 84 is seen as a partition of the set S of speech acts. This means that
Vi,je1,4],i#j=8NS; =2 and S US;US3USs = S. Hence, every speech
act symbol belongs to one and only one of the four categories S; or Ss or Sz or
Sy.

Definition 1 A move is a formula a : x where a € S is a speech act and x is
either a propositional formula (x € L) or an argument (x € Arg(L)). Let M be
the set of moves.

For instance, Question : sky_blue is a move meaning that the agent asks whether
the sky is blue or not. Here, “Question” is a speech act and sky_blue is a propo-
sitional formula (whose value is true or false).

3 The semantics

3.1 Commitment

In the scientific literature, one can find proposals where the semantics of an ACL
is defined in terms of commitments. Examples of these are given by Colombetti
[5] and Singh [13, 14]. The authors argued that agents are social entities, involved
in social interactions, then they are committed to what they say.

In recent years, it has been argued that informal logic has much to offer to
the analysis of inter-agent communication. Central in these approaches are the
notions of dialogue games and (social) commitments. One rather influential di-
alogue game is DC, proposed by MacKenzie [9] in the course of analysing the
fallacy of question-begging. DC provides a set of rules for arguing about the
truth of a proposition. Each player has the goal of convincing the other, and
can assert or retract facts, challenge the other player’s assertions, ask whether
something is true or not, and demand that inconsistencies be resolved.
Associated with each player is a commitment store, which holds the commitments
of the players during the dialogue. Commitments here are the information given
by the players during the dialogue. There are then rules which define how the
commitment stores are updated. Take for instance the assertion, it puts a propo-
sitional statement in the speaker’s commitment store. What this basically means
is that, when challenged, the speaker will have to justify his claim. But this does
not presuppose that the challenge will come at the next turn in the dialogue.
For our purpose, we adopt this presentation of commitments. In this paper we are
not interested in modeling the agent’s reasoning, we only consider what is said
by each agent. Our purpose is to provide a semantics for the dialogue without
worrying about the mental states of the agents.

Each agent is supposed to be equipped with a commitment store, accessible to
all agents, which will contain its commitments made during the dialogue. The
union of the commitment stores of all agents at turn ¢ can be viewed as the state
of the dialogue at turn ¢. We adopt a commitment store much more structured
than the one presented in previous works on dialogue [1,3]. It keeps tracks of
two kinds of commitments:
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— The commitments made in the dialogue by the agent itself such as assertions
and promises.

— The commitments made by other agents, such as requests, challenges and
questions. For instance if an agent a; makes a request r to another agent a;,
the request (r) is stored in the commitment store of a;. Hence, a; is said
committed to satisfy this request.

More formally, for each agent a;, we denote C'S; its commitment store, containing
statements and issues to be resolved.

Definition 2 A commitment store CS; associated to an agent a; is a pair:
CS; = (A, 0y)
where

— A; € M stands for the set of moves of agent a; whose speech acts are in
{51783754}'

— O; € M stands for the set of moves received by agent a; and whose speech
acts are in Sy.

The disctinction between the two kinds of commitments is necessary because
statements expressed by the agent itself commit its honesty whereas statements
expressed by other agents commit its cooperativity. They are the different by
nature and, in our opinion, should not be mixed.

From the above definition, it is also clear that assertive, commissive and declar-
ative speech acts are related to the first kind of commitments (honesty), whereas
directive speech acts are related to the second kind of commitments.

3.2 Penalties

Each time an agent makes a speech act, it makes a commitment. So, it is natural
to associate to each commitment a penalty which sanctions the agent if it does
not respect this commitment. For the sake of simplicity, we consider that the
cost associated to a move depends only of its category.

Definition 3 (Penalty) Let a1, as, ag and oy be numbers in [0, 4+00] associ-
ated respectively to the categories S1, So, S3 and Sy.
A penalty associated with a category S; is the number ;.

We distinguish between two kinds of bad behaviors: i) to not be honest, and ii)
to not cooperate. Hence, to each commitment store a pair of costs is defined.
Formally, the cost associated to the commitment store C'S; = (A;, O;) of agent
a; at time t, is a pair (c(A;), c(0;)), where c¢(A;) is the cost associated to the
statements of agent a; which are violated, and ¢(O;) is the cost associated to
the requests made by other agents and to which agent a; has not answered yet.
These costs are computed by summing penalties of moves. Deciding which moves
are to take into account depends on their categories.
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With such a semantics for an agent communication language, a “rational” pro-
tocol should be defined in such a way that each agent aims to minimize the costs
associated to its commitment store. This notion of protocol is beyond the scope
of this paper.

4 The semantics of the categories of speech acts

In this section we will examine how the penalty associated to a move of each
category can be computed, i.e., we will describe when a given commitment is
violated by the agent.

4.1 Categories: Assertives (S1) and Declaratives (Sy)

The assertives and the declaratives behave exactly in the same way, but apply
on two distinct languages. Indeed, for the assertives, the content of the moves
are formulas of £ built only on the set of non-action variable (N.AV), whereas
the ones of declaratives are built on action variables (A4)).

During a dialogue, an agent may claim that some statement is true. This agent is
then, not allowed to contradict itself during all the dialogue otherwise it should
pay a penalty.

Storage All the assertive moves are stocked in the commitment store of the
agent, exactly in the part A;. When an assertive move comes as a response to a
question or a challenge, for instance, this question or challenge is removed from
the set O;. However, if it is rather a response to a kind of commissive speech act
like a promise, then the promise is removed from A;.

Va € S, there are two cases, either the associated assertion is a formula or it is
an argument:

— Vz € L, if agent a; commits a : x then
e a:xis added to A;, and
e V(a' :y) € Oj,such thata’ € S, andy € Land xz vy, d :yis removed
from O;, and
e V(a' :y) € Aj,suchthat o’ € Ssandy € Land xz Fy, d :yis removed
from A;.
— Vo= {(I,p) € Arg(L), if agent a; commits a : x then
e a:xis added to A;, and
e V(a' :y) € Oj,such that o’ € Ssandy € Land p by, d :yis removed
from O;, and
e V(a' :y) € A;,suchthat o’ € Ssandy € Land p by, d :yis removed
from A;
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Associated Cost: Costs associated to assertives concern non-honesty. An as-
sertive move a : x, where a € §; and © € L U Arg(L), is a violated commitment
if the part A; of agent a;’s commitments store allows to deduce that the formula
x is false or to deduce that one formula of the support of the argument z is false.
Hence, the cost associated to an assertive is given by:

V(a:xz) € A;, if a € 81, there are two cases, either the assertion z is a formula
or it is an argument:

B . _ aq if Az H —Z,

Ve €L, cla:x) = {0 otherwise

- B . Jarif3p el A o,
Vo = (I',¢) € Arg(L), c(a: x) = {0 otherwise

4.2 Category S;: Directives

The agent attempts to get another agent to do something. For instance, Request,
Question, Challenge are Directives.

Storage Directives of Agent a; towards Agent a; are stored in the part O; of
the commitment store of agent a;, if there is not already an answer to it in A;
(which can be either assertive or declarative):

Va € Sy, the directive a : x of Agent a; towards Agent a; is added to O; if
A’ :y) € Aj, such that o’ € §; US, and:

—yeLandytzx
—ory= () € Arg(L) and p I y.

Associated Cost Costs associated to directives are only penalties of non-
cooperativity. It means that a directive is violated if it is in the part O; of
Agent a; (agent a; has not already answered to it).

V(a:z) € O;ifa€ S,Vr e L, cla:x) =g

4.3 Category S3: Commissives

The agent commits to some future course of action. For instance, Promise is in
the Commissives. The most general form of promise is “if ¢ is true then I swear
that ¥ will be true”, “if you do that, I will kill you”. It can be encoded by the
move Promise : o — .

Storage Commissives of Agent a; are stored in the part A; of its commitment
store if the associated formula is not already true in A; (either because there is
an assertive or a declarative move which makes it true):

Va € Sz, the commissive a : z of Agent a; is added to A; if A(a’ :y) € A;, such
that @’ € S; U S, and:

—yeLandytkzx
—ory={(l,¢) € Arg(L) and ¢ I y.
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Associated Cost Costs associated to commissives are only costs of non-honesty.
As long as a commissive is in the commitment store, it costs a penalty since it
means that this commissive has not been made.

Ya:z)e A;Ifae S5,V e L, cla:z)=a3

4.4 Summary

To sum up, the penalties associated to a commitment store C'S; of an agent a;
at turn ¢ are:

cooperation penalty:

pc(CSi): E a2

(a:z)€0;

honesty penalty:

pr(CS;) = >

(a:z)€A; s.t. a€Si(resp.Ss) and z=(Ip)eArg(£) and Iypel S.t. Ak

+ Z a(resp.ay)

(a:x)€A; s.t. a€Si(resp.Sq) and zel and A;Fb—z

+ Z a3

(a:x)€A; s.t. a€Ss

Or equivalently, (since we suppose that ¢(a : x) only depends on the category of

a):
p.(CS;) = Z cla: x)

(a:x)€0;,aES,

and

pr(CS;) = Z c(a: x)
st. a€eSUS,

2)EA, z=(I,¢) € Arg(L) and Fp € " s.t. A; =)
(a:z)€A;{ or  and {Orx e L and A; -~z
st. a€S;
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5 Related work

The first standard agent communication language is KQML [7]. It has been de-
veloped within the Knowledge Sharing Effort, a vast research program funded by
DARPA (the US Defense Advanced Research Projects Agency). More recently,
the Foundation for Intelligent Physical Agents (FIPA) has proposed a new stan-
dard, named ACL [8]. Both KQML and ACL have been given a mentalistics
semantics. The semantics is based on a notion of speech act close to the concept
of illocutionary act as developed in speech act theory [4,12].

Such semantics assumes, more or less explicitly, some underlying hypothesis in
particular, that the agents are sincere and cooperative. While this may be well
fitted for some special cases of interactions, it is obvious that some dialogue types
listed by Walton and Krabbe in [15] are not cooperative. For example, assuming
sincerity and cooperativity in negotiation may lead to poor negotiators. Another
more important limitation of this approach is the fact that it is not verifiable
since it is based on the mental states of the agents. Our semantics does not refer
at all to the mental states of the agents. Moreover, it does not treat particular
speech acts as it is the case with this mentalistic approach.

In the second approach, called social and developed in [5,13,14], primacy is
given to the interactions among the agents. The semantics is based on social
commitments brought about by performing a speech act. For example, by af-
firming a data, the agent commits on the truth of that data. After a promise,
the agent is committed carrying it out. There are several weak points of this
approach and we summarize them in the three following points:

1. The definition of commitments complicates the agent architecture in the sense
that it needs an ad hoc apparatus. The commitments are introduced especially
for modeling communication. Thus agents should reason not only on their be-
liefs, etc but also on the commitments. In our approach, we didn’t introduce
any new language to treat commitments. We call a commitment any informa-
tion stocked in a commitment store. Handling these commitments (to add a new
commitment, to retract a commitment, to achieve a commitment, to violate a
commitment) is done directly on the commitment store.

2. The level at which communication is treated is very abstract, and there is a
considerable gap to fill in order to bring the model down to the level of imple-
mentation. However, the semantics presented in this paper can be implemented
easily.

3. The concept of commitment is ambiguous and its semantics is not clear. Ac-
cording to the speech act, the semantics of the commitment differs. For example:

Inform: by affirming a data, the agent commits on the truth of that data. The
meaning of the commitment here is not clear. It may be that the agent can
justify the data or can defend it against any attack, or the agent is sincere.

Request: According to Colombetti [5] after a request, the receiver precommits
to carry it out. This idea is in our opinion drawn from the notion of protocol.
The protocol specifies for each act the set of allowed replies. So after a
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request, generally the receiver can accept it, reject it or propose another
alternative.

The last approach developed by Pitt and Mandani in [10] is based on the notion of
protocol. A protocol defines what sequences of moves are conventionally expected
in the dialogue. The meaning of a speech act then equates with the set of the
possible following answers.

However, protocols are often technically finite state machines. This turns out to
be too rigid in several circumstances. Current research aims at defining flexible
protocols, which rely more on the state of the dialogue, and less on dialogue
history. This state of dialogue is captured through the notion of commitment.

6 Conclusion

This paper has introduced a general semantics of any agent communication
language. The semantics is general in the sense that it can be used with any
set of speech acts since it is defined on categories of speech acts rather than
the speech acts themselves. Indeed, for the first time, we have a semantics of an
ACL which is defined independently from the syntax of that ACL. This makes
the semantics flexible and general.

The new semantics is social in nature and is based on the notion of commit-
ments. However, our modeling of this notion is very different from the existing
approaches. Indeed, the commitments are modeled as in MacKenzie’s system DC
[9]. A commitment is any information stocked in the commitment store of the
agent. Two kinds of commitments have been distinguished: the commitments
to satisfy or to respect what the agent has already said, promised, etc. and the
commitments to answer to other agents.

Unlike in the existing approaches, the semantics of a commitment is unique and
is given via the notion of penalty that should be paid if an agent does not respect
that commitment.

Our semantics goes somewhat beyond the existing approaches in giving an oper-
ational, verifiable and flexible semantics. An extension of this work would be to
simplify the protocols by extending our semantics by rules which were generally
defined in the protocol itself. For instance, in the semantics, we can sanction
agents which repeat, the same move several times during a dialogue. Another
extension would be to refine the penalties by introducing granularity in the cat-
egories of speech acts. The idea is, maybe, to associate different penalties for the
speech acts in order to capture the idea that some commitments are harder to
violate than others. The same idea applies also to the content of the moves.
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Abstract. Modal logic programming is one of appropriate approaches
to deal with reasoning about epistemic states of agents. We specify here
the least model semantics, the fixpoint semantics, and an SLD-resolution
calculus for modal logic programs in the multimodal logic K D4I,5,,
which is intended for reasoning about belief and common belief of agents.
We prove that the presented SLD-resolution calculus is sound and com-
plete. We also present a formalization of the wise men puzzle using a
modal logic program in K D4I,5,. This shows that it is worth to study
modal logic programming for multi-agent systems.

1 Introduction

Reasoning is an important aspect of agents. In order to be able to make right
actions, an agent should have general knowledge of the field it works on, infor-
mation about the environment, and abilities to interact with the environment, to
make inferences, and to revise its knowledge base. In multi-agent systems, agents
should be able to communicate, collaborate, and sometimes compete with each
other. For this aim, an agent should have knowledge about other agents in the
system and be able to reason about their epistemic states. It is not that an agent
can have all information it wants or can reason exactly as the others, but at least
it can simulate epistemic states of the other agents, using some assumptions. The
wise men puzzle introduced by McCarthy [17] is an example of reasoning about
epistemic states of agents. We will study it in Section 3.

Modal logics and logic programming are useful instruments for multi-agent
systems. Using modal logics is a natural way to represent and reason about
knowledge and belief of agents (see, e.g., [10,28,27,14,7,1]). Logic programming
is also useful because logical implication is probably the inference form humans
use most and want to adopt for multi-agent systems. Thus, one can think about
modal logic programming as an approach to deal with reasoning about epistemic
states of agents.

Modal logic programming has been studied in a number of works (see the
earlier surveys [24,12] and the later works [23,5,19,22]). There are two ap-
proaches: the direct approach [11,3,5,19,22] and the translation approach [8,
23]. The first approach directly uses modalities, while the second one translates



modal logic programs to classical logic programs. In this paper we will use the
direct approach. This approach is justifiable, as the direct approach deals with
modalities more closely, and modalities allow us to separate object-level and
epistemic-level notions nicely.

In [19], we developed a fixpoint semantics, the least model semantics, and an
SLD-resolution calculus in a direct way for modal logic programs in all of the
basic serial monomodal logics. In that work we do not assume any special restric-
tion on occurrences of O and < in programs and goals. In [22], we generalized
the methods of [19] and gave a general framework for developing fixpoint seman-
tics, the least model semantics, and SLD-resolution calculi for logic programs in
normal multimodal logics whose frame restrictions consist of the conditions of
seriality and some classical first-order Horn formulas.

In this work, we instantiate the above mentioned framework for the multi-
modal logic KD41,5,, which was introduced in [20] for reasoning about belief
and common belief. We prove that the obtained SLD-resolution calculus is sound
and complete. We also give a purely logical formalization of the wise men puzzle
using a modal logic program in KD41,5,.

The rest of this paper is structured as follows. In Section 2, we give def-
initions for multimodal logics, define the multimodal logic K D4I,5, and the
modal logic programming language MProlog. In Section 3, we recall the wise
men puzzle and formalize it by an MProlog program in K D41,5,. In Section 4,
we instantiate the framework given in [22] for K D4I,5, in order to specify the
least model semantics, the fixpoint semantics, and an SLD-resolution calculus
for MProlog programs in K D41,5,. Soundness and completeness of the obtained
SLD-resolution calculus is proved in Section 5. (Due to the lack of space we do
not present proofs involving with the fixpoint semantics and the least model
semantics.) Finally, Section 6 contains some concluding remarks.

2 Preliminaries

2.1 Syntax and Semantics of Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language of
classical predicate logic with modal operators O; and <;, for 1 <14 < m (where
m is fixed). The modal operators O; and <; can take various meanings. For
example, O; can stand for “the agent i believes” and <; for “it is considered
possible by agent ¢”. The operators O; are called universal modal operators,
while ©; are called existential modal operators. Terms and formulas are defined
in the usual way, with an emphasis that if ¢ is a formula then O;¢ and <;p are
also formulas.

A Kripke frame is a tuple (W, 7, Ry, ..., R,,), where W is a nonempty set of
possible worlds, 7 € W is the actual world, and R; is a binary relation on W,
called the accessibility relation for the modal operators O;, <;. If R;(w,u) holds
then we say that the world u is accessible from the world w via R;.

A fized-domain Kripke model with rigid terms, hereafter simply called a
Kripke model or just a model, is a tuple M = (D, W, 7, Ry, ..., Ry, 7), where
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D is a set called the domain, (W, T, R1,...,Ry,) is a Kripke frame, and 7 is an
interpretation of constant symbols, function symbols and predicate symbols. For
a constant symbol a, 7(a) is an element of D, denoted by a™. For an n-ary
function symbol f, w(f) is a function from D" to D, denoted by f*. For an
n-ary predicate symbol p and a world w € W, w(w)(p) is an n-ary relation on
D, denoted by pM*.

A model graph is a tuple (W, 7, R1,..., Ry, H), where (W, 7,Ry,...,Ry,,) is
a Kripke frame and H is a function that maps each world of W to a set of
formulas.

Every model graph (W, 7, Ry,..., R, H) corresponds to a Herbrand model
M= U, W,T,Ry,..., Ry, ) specified by: U is the Herbrand universe (i.e. the set
of all ground terms), c™ = ¢, fM(ty,...,t,) = f(t1,...,tn), and ((t1,...,t,) €
pMwy = (p(ty,...,t,) € H(w)), where ty,...,t, are ground terms. We will
sometimes treat a model graph as its corresponding model.

A wvariable assignment V w.r.t. a Kripke model M is a function that maps
each variable to an element of the domain of M. The value of t*[V] for a term
t is defined as usual.

Given some Kripke model M = (D,W, 1, Ry,...,R,,, ), some variable as-
signment V', and some world w € W, the satisfaction relation M,V,w F 1 for a
formula v is defined as follows:

M, V,wE p(ty, ... t,) f (1 [V],... .6}/ [V]) € p";
M, V,wE O iff for all v € W such that R;(w,v), M,V,v E ¢;
M,V,wE Vx.p iff forallae D, (M,V' wE ),

where V/(z) = a and V'(y) = V(y) for y # z;

and as usual for other cases (treating ¢;¢ as =0;—, and Jx.p as —Vz.—p). We
say that M satisfies ¢, or ¢ is true in M, and write M E ¢, if M, V,7 E ¢ for
every V. For a set I' of formulas, we call M a model of I" and write M F I' if
M E ¢ for every ¢ € I'.

If as the class of admissible interpretations we take the class of all Kripke
models (with no restrictions on the accessibility relations) then we obtain a
quantified multimodal logic which has a standard Hilbert-style axiomatization
denoted by K,,. Other normal (multi)modal logics are obtained by adding cer-
tain axioms to K,,. Mostly used axioms are ones that correspond to a certain
restriction on the Kripke frame defined by a classical first-order formula using
the accessibility relations. For example, the axiom (D) : O;¢ — <;¢ corresponds
to the frame restriction Vo Jy R;(z,y).

For a normal modal logic L whose class of admissible interpretations can
be characterized by classical first-order formulas of the accessibility relations,
we call such formulas L-frame restrictions, and call frames with such properties
L-frames. We call a model M with an L-frame an L-model. We say that ¢ is L-
satisfiable if there exists an L-model of ¢, i.e. an L-model satisfying ¢. A formula
@ is said to be L-valid and called an L-tautology if ¢ is true in every L-model.
For a set I' of formulas, we write I' F1, ¢ and call ¢ a logical consequence of I’
in L if ¢ is true in every L-model of I'.
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2.2 The Multimodal Logic KD41,5,

Suppose that there are n agents and m = 2™ — 1. Let g be an one-to-one function
that maps every natural number less than or equal to m to a non-empty subset
of {1,...,n}. Suppose that an index 1 < i < m stands for the group of agents
whose indices form the set g(¢). To capture belief and common belief of agents,
we can extend K, with the following axioms

(D) : O;0 — —0;~¢ (belief is consistent),

(4) : O;0 — 0;0;p (belief satisfies positive introspection),

— (Iy) : Ojp — Ojp if g(i) D g(j) (if 7 indicates a supergroup of a group j
then every common belief of ¢ is also a common belief of j).

— (54) : "0, — O0;-0,¢ if g(4) is a singleton (belief of a single agent satisfies

negative introspection).

Thus, for reasoning about belief and common belief, we can use:
KD4Ig5a - Km + (D) + (4) + (Ig) + (5a)

Here we want to catch the most important properties of belief and common
belief, and the aim is not to give an exact formulation of belief or common belief.
The logic KD41,5, was introduced in [20]'. It is different in the nature from
the well-known multimodal logic of common knowledge. It also differs from the
modal logic with mutual belief [1].

The given axioms correspond to the following frame restrictions:

Axiom Corresponding Condition

(D) Vu3vR;(u,v)

(4) Vu, v, w (R;(u,v) A Ri(v,w) — R;(u,w))

() R, C R if g(8) > g(j)

(54)  Vu,v,w (R;(u,v) A R;i(u,w) — R;(w,v)) if ¢g(7) is a singleton

For further reading on epistemic logics, see, e.g., [10,28,7,1].

2.3 Modal Logic Programs

A modalityis a (possibly empty) sequence of modal operators. A universal modal-
ity is a modality which contains only universal modal operators. We use A to
denote a modality and @B to denote a universal modality. Similarly as in classi-
cal logic programming, we use a clausal form E(¢ < 91,...,%;,) to denote the
formula Y(E(p V =11 ...V —1y,)). We use E to denote a classical atom and A,
By, ..., By to denote formulas of the form FE, O,F, or O F.

A program clause is a formula of the form @(A < By,...,B,,), where n > 0.
@ is called the modal context, A the head, and By, ..., B, the body of the program
clause. An MProlog program is a finite set of program clauses.

! The propositional version of K D4I,5, is decidable. However, we do not have com-
plexity result for it yet. Hopefully, it will be available in the next version of this

paper.
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An MProlog goal atom is a formula of the form BF or @<, E. An MProlog
goal is a formula written in the clausal form «— aq, ..., ag, where each «; is an
MProlog goal atom. The empty goal (i.e. the empty clause) is denoted by .

In KD41,5,, if g(¢) is a singleton then we have the equivalence V;Vip = Vip
for any modal operators V; and V) with the same modal index 4. For this reason,
we adopt some restrictions to simplify the form of MProlog programs and goals
in KD41,5,. An MProlog program is called a K D41,5,-MProlog program if the
modal contexts of its program clauses do not contain subsequences of the form
0,0, if g(¢) is a singleton. An MProlog goal is called a K D4I;5,-MProlog goal
if each of its goal atoms AFE satisfies the condition that A does not contain
subsequences of the form 0;0; or 0;0; if g(4) is a singleton.

Let P be an KD41,5,-MProlog program and G = < oa1,...,q; be an
K DA4I,5,-MProlog goal. An answer 6 for PU{GY} is a substitution whose domain
is the set of all variables of G. We say that 0 is a correct answer in K D415, for
PU{G} if 0 is an answer for PU{G} and P Fgpar,s, V((a1 A ... Aag)d).

It is shown in [20] that MProlog has the same expressiveness power as the gen-
eral Horn fragment in normal modal logics. Moreover, the restrictions adopted
for K D41,5,-MProlog do not reduce expressiveness of the language (see [20]).

3 The Wise Men Puzzle

Before considering technical details of semantics of K D41,5,-MProlog, we give
a formalization of the three wise men puzzle in MProlog. The puzzle is a famous
benchmark introduced by McCarthy [17] for Al It can be stated as follows
(cf. [15]). A king wishes to know whether his three advisors (A, B, C) are as
wise as they claim to be. Three chairs are lined up, all facing the same direction,
with one behind the other. The wise men are instructed to sit down in the order
A B, C. Each of the men can see the backs of the men sitting before them (e.g. C
can see A and B). The king informs the wise men that he has three cards, all
of which are either black or white, at least one of which is white. He places one
card, face up, behind each of the three wise men, explaining that each wise man
must determine the color of his own card. Each wise man must announce the
color of his own card as soon as he knows what it is. All know that this will
happen. The room is silent; then, after a while, wise man A says “My card is
white!”.

The wise men puzzle has been previously studied in several works (e.g., [17,
15,9,6,2,23,4]). McCarthy [17] directly used possible worlds to formalize the
puzzle. Konolige [15], Nonnengart [23], and Baldoni [4] also used modal logics
for the puzzle. Konolige [15] focused on limited reasoning, Nonnengart [23] used
semi-functional translation for modal logic programming, and Baldoni [4] used
a prefixed tableau system. Both McCarthy [17] and Nonnengart [23] used some
feature of mutual belief, but they did not define it purely. Baldoni [4] adopted
too strong versions of axioms 4 and 5, which are not suitable for the puzzle. As
other approaches for the wise men puzzle, Elgot-Drapkin [9] used step-logics,
while Cimatti and Serafini [6], Attardi and Simi [2] studied reasoning in belief-
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contexts. Our formalization of the wise men puzzle given below uses K D41y5,-
MProlog. It is more elegant than the above-mentioned formalizations, as it uses
a modal logic with a clear semantics of common belief in a direct way.

As reported in [21], we have designed and implemented a modal logic
programming system, also called MProlog. In that system, SLD-resolution
calculi for MProlog can be specified according to the theoretical framework
given in [22]. An instantiation of that framework for K D4I,5, is presented
in the next section. Its implementation (of SLD-resolution) is denoted by
ccKD4Igbha. In that implementation, bel denotes belief and pos denotes possi-
bility, and modalities are represented by lists, e.g. 0;(X);<{rg(a) is represented
by [bel(I),pos(J, X),pos(K)] : g(a). The implemented calculus requires defini-
tions of predicates singleton_group/1, subgroup/2, and union_group/3. Denote
the wise men by a, b, ¢, and the possible groups by gAB, gAC, gBC, gABC,
where, e.g., gABC = {a,b, c}. Thus, [bel(gABC')] : ¢ means that ¢ is a common
belief of the group {a, b, c¢}. Define the mentioned required predicates in the usual
way. The three wise men problem can be formalized by the following program:

:- calculus ccKD4lgha.

% If Y sits behinds X then X’s card is white if Y considers this as possible.
[bel(gABC)]: (white(X) :-
member(X, [a,b,c]), member(Y, [a,b,c]), X @< Y, [pos(Y)]:white(X)).

% The following formula is “dual” to the above formula.
[bel(gABC)]: ([bel(Y)]:black(X) :-
member(X, [a,b,c]), member(Y, [a,b,c]), X @< Y, black(X)).

% At least one of the wise men has a white card.

[bel(gABC)]: (white(a) :- black(b), black(c)).

[bel(gABC)]: (white(b) :- black(c), black(a)).

[bel(gABC)]: (white(c) :- black(a), black(b)).

/* Each of B and C does not know the color of his own card. In particular, each
of the men considers that it is possible that his own card is black. */
[bel(gABC),pos(b)]:black(b).

[bel(gABC),pos(c)]:black(c).

The question is whether A believes that his card is white. It is passed to the
interpreter as mcall([bel(a)] : white(a)) and solved in less than 1 second? using
certain option settings.

The above program uses the syntax of the implemented system. We give
below a version using the purely logical formalism of MProlog. For clarity, instead
of numeric indices we use a, b, ¢, ab, ac, be, abc with the meaning that g(a) = {a},
g(b) = {b}, g(c) ={c}, ..., and g(abc) = {a, b, c}. Let Pyise_men be the following
program:

w1 = Ogpe (white(a) «— Op white(a))
w2 = Ogpe (white(a) — O white(a))

2 on TravelMate 230X, 1.7GHz-M
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3 = Uape (whzte(b) — O, whzte(b))

w4 = Ogpe (Op black(a) «— black(a))
©5 = Oape (Ocblack(a) < black(a))
w6 = Ogpe (Ocblack(b) < black(b))

w7 = Oupe (white(a) <« black(b), black(c))
©8 Oabe (white(b) < black(c), black(a))
P9 Oabe (white(c) < black(a), black(b))
w10 = OgpeCp black(d)
Y11 = Dabcoc blCLCk(C)

The goal is «— O,white(a). We will continue this example in Section 4.5.
For a formalization of the puzzle with n wise men, see [22].

4 Semantics of K D41,5,-MProlog Programs

In this section, we present the least model semantics, the fixpoint semantics and
an SLD-resolution calculus for K D41,5,-MProlog programs. For abbreviation,
from now on we use L to denote K D41,5,.

4.1 Labeled Modal Operators

When applying the direct consequence operator 17, p for an MProlog program
P in L, if we obtain an “atom” of the form A<, FE, then to simplify the task we
label the modal operator <;. Labeling allows us to address the chosen world(s)
in which this particular £ must hold. A natural way is to label &; by FE to obtain
(E);. On the other hand, when dealing with SLD-derivation, we cannot change
a goal «— <;(A A B) to — O;A,<;B. But if we label the operator <;, let’s say
by X, then we can safely change « (X);(A A B) to «— (X); A, (X),B.
We will use the following notations:

— T : the truth symbol, with the usual semantics?;

— E, F : classical atoms (which may contain variables) or T;

— X, Y, Z : variables for classical atoms or T, called atom variables;

— (E);, {X); : ©; labeled by E or X;

-V : 0, 4 (E);, or (X);, called a modal operator;

— A : a (possibly empty) sequence of modal operators, called a modality;
— @ : a universal modality;

— A, B : formulas of the form F or VFE, called simple atoms;

— «, (8 : formulas of the form AF, called atoms;

©, P : (labeled) formulas (i.e. formulas that may contain (E); and (X);).

We use subscripts beside V to indicate modal indexes in the same way as for
O and <. To distinguish a number of modal operators we use superscripts of the
form (i), e.g. O, 0@, v@ v,

3 i.e. it is always true that M, V,wE T
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A ground formula is a formula with no variables and no atom variables. A
modal operator is said to be ground if it is O;, ;, or (E); with E being T
or a ground classical atom. A ground modality is a modality that contains only
ground modal operators. A labeled modal operator is a modal operator of the
form (E); or (X);.

Denote EdgeLabels = {(E); | E € BU{T} and 1 < i < m}, where B is
the Herbrand base (i.e. the set of all ground classical atoms). The semantics
of (E); € EdgeLabels is specified as follows. Let M = (D, W, 7, Ry,..., Ry, )
be a Kripke model. A <-realization function on M is a partial function o :
W x EdgeLabels — W such that if o(w, (E);) = u, then R;(w,u) holds and
M,u F E. Given a <-realization function o, a world w € W, and a ground
formula ¢, the satisfaction relation M,o,w E ¢ is defined in the usual way,
except that M, o,w E (E);¢ iff o(w, (E);) is defined and M, o, o(w, (E);) E 1.
We write M, o E ¢ to denote that M, o, 7 E . For a set I of ground atoms, we
write M, o E I to denote that M,o F « for all a € I; we write M £ I and call
M a model of I if M,o E I for some o.

4.2 Model Generators

We define that a modality Vgll) e ng) isin the L-normal formifforalll <j <k
if g(i;) is a singleton then i; # i;41. (Note that if g(i) is a singleton then
V. Vip = Vg is KD41,5,-valid.) A modality is in L-normal labeled form if it
is in L-normal form and does not contain modal operators of the form <; or
(T);. An atom is in L-normal (labeled) form if it is of the form AE with A in
L-normal (labeled) form. An atom is in almost L-normal labeled form if it is of
the form AA with A in L-normal labeled form.

A model generator is a set of ground atoms not containing <;, (T);, T. An
L-normal model generator is a model generator consisting of atoms in L-normal
labeled form.

We will define the standard L-model of an L-normal model generator I so
that it is a least L-model of I (where a model M is less than or equal to a model
M’ if for every positive ground formula ¢ without labeled operators, if M F ¢
then M’ E ¢). In the construction we will use the operator Ext; defined below.

A forward rule is a schema of the form o — 3, while a backward rule is a
schema of the form a < (3. A rule can be accompanied with some conditions
specifying when the rule can be applied.

The operator Exty, is specified by the corresponding forward rules given in
Table 1. Given an L-normal model generator I, Exty(I) is the least extension
of I that contains all ground atoms in L-normal labeled form that are derivable
from some atom of I using the rules specifying Extr. Note that Extr(I) is an
L-normal model generator if so is I.

Denote Serialy, = {E(T); T | 1 <i<m and B(T); is in L-normal form}.

Let I be an L-normal model generator. The standard L-model of I is con-
structed by building an L-model for Fxtr(I) U Serial;, according to the se-
mantics of ground labeled modal operators, and formally is defined as fol-
lows. Let W’ = EdgeLabels* (i.e. the set of finite sequences of elements of
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L= KD41,5,, L-MProlog

< is defined in page 10.
The L-normal form of modalities is defined in page 8.

Rules specifying operators Extr,, Satr,, NFr, rNFr, rSaty:
(Both sides of each rule are in almost L-normal labeled form.)

Ext, AD;a — ADja if g(i) D g(4) (1)
ADia — ADiDia (2)

Satr, the rules specifying Extr, plus
A(F);E — AO;OE if g(i) is a singleton (3)
AVV'E — ANOE if O; <1, V and ©; < V/ (4)

NF, AV, V,E — AV,E if g(i) is a singleton and
Vi is of the form O, or (E); (5)

rNFp AVE «— A(X);V;E if g(4) is a singleton,
V; is of the form O; or (E);, and X is a fresh atom variable (6)

rSatr, ANO;E — A(X);E for X being a fresh atom variable (7)
AVia — ADja it g(i) C 9(j) (8)
AOE — AOE if g(i) D g(5) (9)
ADiDiOz — ADiOt (10)
AV;OE — AOE if g(4) is a singleton (11)
AOE — AN(X);OF if g(4) 2 g(j) and

X is a fresh atom variable (12)

Table 1. A schema for semantics of K D41,5,-MProlog

{{(E); | E€e BU{T}and 1 <i<m}), 7 =¢ H(r) = Exty(I) U Serialy,. Let
R, CW' x W and H(u), for u € W', u # 7, be the least sets such that:

— if (E);a € H(w), then R.(w,w(E);) holds and {F,a} C H(w(E););
— if 0,0 € H(w) and R, (w,w(E);) holds, then o € H(w(E);).

Let R;, for 1 <i < m, be the least* extension of R’ such that {R; | 1 <i < m}
satisfies all the L-frame restrictions except seriality (which is cared by Serialy,).
Let W be W’ without worlds not accessible directly nor indirectly from 7 via
the accessibility relations R;. We call the model graph (W, 7, Ry,..., Ry, H)
the standard L-model graph of I, and its corresponding model M the standard
L-model of I. {R}; | 1 <1i<m} is called the skeleton of M. By the standard <-

4 the least extension exists due to the assumption that all L-frame restrictions not
concerning seriality are classical first-order Horn formulas
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realization function on M we call the <-realization function o defined as follows:
if R}(w,w(E);) holds then o(w, (E);) = w(E);, else o(w, (E);) is undefined.

It can be shown that the standard L-model of an L-normal model generator
I is a least L-model of I.

4.3 Fixpoint Semantics

‘We now consider the direct consequence operator 17, p. Given an L-normal model
generator I, how can 77, p(I) be defined? Based on the axioms of L, I is first
extended to the L-saturation of I, denoted by Saty (I), which is a set of atoms.
Next, L-instances of program clauses of P are applied to the atoms of Saty(I).
This is done by the operator T, 1, p. The set T 1, p(Satr(I)) is a model generator
but not necessary in L-normal form. Finally, the normalization operator N FTp,
converts 1 r, p(Satr (1)) to an L-normal model generator. Tr, p(I) is defined as
NF(Tp,p(Satr(I))).

To compare modal operators we define <; to be the least reflexive and
transitive relation between modal operators such that <¢; <p (F); =<p 0O,
C; 2 (X)i 2 O, and if g(i) € g(j) then O; <z O; and O; =, ;.

An atom V) ... V¢ is called an L-instance of an atom V1) .. V")
if there exists a substitution 6 such that o = /6 and V® < V(9 for all
1 < i < n (treating V) as an expression). For example, if g(1) C g(2) then
0,04 F is an L-instance of Oo(F)1 E.

A modality A is called an L-instance of /\’, and we also say that A’ is equal
to or more general in L than A\ (hereby we define a pre-order between modalities),
if AF is an L-instance of A’E for some ground classical atom E.

Let @ and @’ be universal modalities in L-normal form. We say that & is an
L-context instance of @' if @'¢ — By is L-valid (for every ¢). (It can be shown
that the propositional version of the logic L is decidable. So, the problem of
checking whether a given universal modality is an L-context instance of another
one is also decidable.)

Let @ and @' be universal modalities in L-normal form, ¢ and ¢’ be program
clauses with empty modal context. We say that B¢ is an L-instance of (a program
clause) @'’ if @ is an L-context instance of @’ and there exists a substitution
0 such that ¢ = ©'6.

For example, if g(1) C ¢(2) then O30, is an L-context instance of Oy and
00 (p(a) < ¢(a)) is an L-instance of Oy (p(x) < q(x)).

We now give definitions concerning Saty, T)r, p, and NFJ,.

The saturation operator Saty is specified by the corresponding forward
rules given in Table 1. Given an L-normal model generator I, Satr(I) is the
least extension of I that contains all ground atoms in almost L-normal la-
beled form that are derivable from some atom in I using the rules specifying
Saty,. For example, if g(1) is a singleton and ¢(2) is not, then Oy050,<1p(a) €
Sat({Oa(a(v))1 p(a)}).

When computing the least fixpoint of a modal logic program, whenever an
atom of the form A<, E is introduced, we “fix” the <& by replacing the atom by

49



A(E);E. This leads to the following definition. The forward labeled form of an
atom « is the atom o such that if « is of the form AO,E then o = A(E);E,
else o/ = . For example, the forward labeled form of ¢1s(a) is (s(a))1s(a).

Let P be an L-MProlog program. The operator I;7, p is defined as follows:
for a set I of ground atoms in almost L-normal labeled form, 1)1, p(I) is the
least (w.r.t. C) model generator such that if @(A <« By,...,B,) is a ground
L-instance of some program clause of P and A is a maximally general® ground
modality in L-normal labeled form such that A is an L-instance of @ and A B; is
an L-instance of some atom of I (for every 1 < i < n), then the forward labeled
form of AA belongs to T, p(I).

For example, if g(1) C ¢(2) and P contains the clause Oo(<Cip(x) «—
q(x),r(x), Bis(z), Oot(x)) and I = {(q(a))1q(a), (q(a))1r(a), B2D2s(a),
O2(t(a))14(a)}, then (g(a))1 (p(a))1p(a) € Top,p (D).

The normalization operator N Fp, is specified by the corresponding forward
rules given in Table 1. Given a model generator I, NFy(I) is the set of all
ground atoms in L-normal labeled form that are derivable from some atom
of I using the rules specifying NFy,. For example, if g(1) is a singleton then
NFL({{a(@))1 (p(a))1p(a)}) = {(p(a)}1p(a)}.

Define Tp, p(I) = NFr(L)r,p(Satr(I))). By definition, the operators Satr,
1,1,p, and N Fp, are all increasingly monotonic and compact. Hence the operator
T, p is monotonic and continuous. By the Kleene theorem, it follows that T, p
has the least fixpoint 77, p Tw = UZ:o Tr pln, where T, p10=0and Tr pTn
=Tr.p(Tr,pT(n—1)) for n > 0. Denote the least fixpoint Tr p Tw by Iz p and
the standard L-model of I, p by My, p.

It can be shown that for an L-MProlog program P, My, p is a least L-model
of P. See also Lemma 1 given in Section 5.

4.4 SLD-Resolution

The main work in developing an SLD-resolution calculus for L-MProlog is to
specify a reverse analogue of the operator 77, p. The operator Ty, p is a com-
position of Satr, 1)1, p, and NFr. So, we have to investigate reversion of these
operators.

A goal is a clause of the form < ay, ..., ay, where each «; is an atom.

The following definition concerns reversion of the operator 1)7, p.

Let G = <« a1,...,q,...,a; be a goal and ¢ = B(A «— Bi,...,B,) a
program clause. Then G’ is derived from G and ¢ in L using mgu 6, and called
an L-resolvent of G and ¢, if the following conditions hold:

— a; = N A, with A in L-normal labeled form, is called the selected atom,
and A’ is called the selected head atom;

— A’ is an L-instance of a universal modality @' and @'(A < By,...,B,) is
an L-instance of the program clause ¢;

— 6 is an mgu of A’ and the forward labeled form of A;

5 w.r.t. the pre-order between modalities described earlier for L
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— G’ is the goal « (a1,...,;—1, AN By,..., N By, g1, ..., a5)0.

For example, if g(1) C ¢g(2) then «— O;<C2q(z), 017 (x) is an L-resolvent of
— Oyp(x) and Og(p(x) < Cag(x),r(z)) (here, @ = Oy and A’ =@’ = Oy).

As a reverse analogue of the operator Saty, we provide the operator rSaty,
which is specified by the corresponding backward rules given in Table 1. We say
that 8 = rSatr(«) using an rSaty rule o/ — 3" if o« [ is of the form o/ — §'.
We write 8 = rSatr(«) to denote that “f = rSatr(«) using some rSaty, rule”.

As a reverse analogue of the operator N F,, we provide the operator rN Fp,
which is specified by the corresponding backward rules given in Table 1. We
say that 8 =¢ rNFr(a) using an rNFL rule o' «— (' if § is an mgu such
that af «— (3 is of the form o «— '. We write 8 =p rNFL(a) to denote that
“8 =¢ rNFp(a) using some rN Ff, rule”. For example, if g(1) is a singleton then
we have (Y)1(E)ZWE =9 rNF,((X)1E) with § = {X/E} and Y being a fresh
atom variable.

Let G = « a1,...,q4,...,af be a goal. If o = rSatr(a;) using an rSaty,
rule ¢, then G’ = — aq,...,®0;_1,0}, &iq1,. .., 0 is derived from G and ¢, and
we call G’ an (L-)resolvent of G and ¢, and «; the selected atom of G.

Similarly, G’ is derived from G and an r N F, rule ¢ using an mgu 6, and called
an (L-)resolvent of G and ¢, if «; is called the selected atom, o =g *NFp (o)
using ¢, and G' = — o160, ..., ;10,0 ;i 110, . .., k0.

For example, resolving < O;0;p(x) with the rule AQ;0;« «— AD;« results
in «— Op(x), since A is instantiated to the empty modality, ¢ is instantiated
to 1, and « is instantiated to p(z).

Observe that rSaty, rules and N Fy, rules are similar to program clauses and
the way of applying them is similar to the way of applying classical program
clauses, except that we do not need mgu’s for rSaty, rules.

We now define SLD-derivation and SLD-refutation.

Let P be an L-MProlog program and G a goal. An SLD-derivation from
PU{G} in L consists of a (finite or infinite) sequence Gy = G, Gy, ... of goals,
a sequence 1, ©s, ... of variants of program clauses of P, rSaty, rules, or rNFp,
rules, and a sequence 61,62, ... of mgu’s such that if ¢; is a variant of a program
clause or an rNFy, rule then G is derived from G;_; and ¢; in L using 6;, else
0; = e (the empty substitution) and G; is derived from G;_; and (the rSaty,
rule variant) ¢;. Each ; is called an input clause/rule of the derivation.

We assume standardizing variables apart as usual (see [16]).

An SLD-refutation of PU{G} in L is a finite SLD-derivation from P U {G}
in L with the empty clause as the last goal in the derivation.

Let P be an L-MProlog program and G a goal. A computed answer 6 in L
of PU{G} is the substitution obtained by restricting the composition 0 ...#0,
to the variables of G, where 61, ...,6, is the sequence of mgu’s used in an SLD-
refutation of PU{G} in L.

4.5 Example

We give here an SLD-refutation of Pyise_men U {<— Oqwhite(a)} in KD4I,5,,
where Pyise_men is the K D41,5,-MProlog program given in Section 3.
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Goals Input clauses/rules MGUs
— O, white(a)

— 0,0 white(a) ©1
— Oy {Xa)p white(a) (7)
— Oy {X2)pCc white(a) P2
— 0,(X2)p(X4)c white(a) (7)
— Oa(X2)p(X4)c black(b), O,(Xa2)p(X4) black(c) 7
— Da<X2>b blaCk(b),Da<X2>b<X4>c black(c) Ve
— Og(black(b))p{X4). black(c) ©10 {Xa/black(b)}
o ©11 {X4/black(c)}

5 Soundness and Completeness

In this section, we prove soundness and completeness of the SLD-resolution
calculus given for K D41,5,-MProlog, which is stated as follows.

Theorem 1. Let P be an KD41,5,-MProlog program and G an KDA4I;5,-
MProlog goal. Then every computed answer in KDA4I1,5, of P U{G} is a cor-
rect answer in KD4I,5, of P U{G}. Conversely, for every correct answer 6 in
KDAI5, of PU{G}, there exists a computed answer y in KD4I,5, of PU{G}
which is more general than 0 (i.e. 6 = ~v§ for some substitution 0 ).

In [22], we presented a general framework for developing fixpoint semantics,
the least model semantics, and SLD-resolution calculi for logic programs in mul-
timodal logics, and proved that under certain expected properties of a concrete
instantiation of the framework for a specific multimodal logic, the SLD-resolution
calculus is sound and complete. The semantics of K D41;5,-MProlog presented
in the previous section and summarized in Table 1 is based on and compatible
with the framework given in [22].

By the results of [22], to prove soundness and completeness of SLD-resolution
of KDA41,5,-MProlog, we can prove Ezpected Lemmas 4 — 10 of [22] (w.r.t. the
schema given in Table 1). The Expected Lemma 6 is trivial, and the Expected
Lemmas 7 — 10, which concern properties of the operators Saty, NFy, rSaty,
and rNFp,, can be verified in a straightforward way. The remaining Expected
Lemmas 4 and 5 are renumbered respectively as Lemmas 1 and 2 given below.

A model generator I is called an L-model generator of P if Tp, p(I) C I.

Lemma 1. Let P be an L-MProlog program and I an L-model generator of P.
Then the standard L-model of I is an L-model of P.

Lemma 2. Let I be an L-normal model generator, M the standard L-model
of I, and a a ground L-MProlog goal atom. Suppose that M = «. Then « is an
L-instance of some atom of Satr(I).

To prove these lemmas we need Lemmas 3 and 4 given below.
If a modality A is obtainable from A’ by replacing some (possibly zero) V;
by O; then we call A a O-lifting form of A’. If A is a O-lifting form of A’ then
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we call an atom A« a O-lifting form of A'«. For example, O (p(a))102q(b) is a
O-lifting form of (X)1(p(a))1< 24(b).

Lemma 3. Let I be an L-normal model generator and M =
(W, T,Ry,..., Ry, H) the standard L-model graph of I. Let w = (E1);, ... {(Ek),
be a world of M and AN = w be a modality. Then for o not containing T,
a € H(w) iff there exists a O-lifting form A" of A\ such that N« € Extr(I).

This lemma can be easily proved by induction on the length of A.
The following lemma is labeled Expected Lemma 2 in [22]. It states that the
standard L-model of I is really an L-model of I.

Lemma 4. Let I be an L-normal model generator, M the standard L-model of
I, and o the standard <-realization function on M. Then M is an L-model and
M,cE 1.

Proof. By the definition, M is an L-model. Let {R] | 1 < i < m} be the skeleton
of M. We prove by induction on the length of « that for any w € W, if o € H(w)
then M, o, w E a. The cases when « is a classical atom or o = (E); 3 are trivial.
Consider the remaining case when o = 0,. Let u be a world such that R;(w,u)
holds. Because Exty (I) contains only atoms in L-normal form and 0,8 € H(w),
there does not exist v such that R}(v,w) holds. Consequently, since R;(w,u)
holds, there exist worlds wo = w, wy, ..., wy_1, wp = u and indices ji,...,Jn
with A > 1 such that R} (wo,w1), ..., R} (wh—1,ws), and g(k) C g(i) for all
k€ {j1,.-.,Jn} Since 0;8 € H(w), by Lemma 3, there exists a O-lifting form
A" of A = w such that A'0;8 € Extr(I). By the rules specifying Exty, it
follows that A'Ojy, ... 0;, 6 € Exty(I). Hence, by Lemma 3, 8 € H(u). By the
inductive assumption, M, o,u F 8. Hence M, o, w F O;0.

Proof of Lemma 1 Let M be the standard L-model of I and ¢ the standard
O-realization function on M. By the definition of L-instances of program clauses
and the construction of M, it is sufficient to prove that for any ground L-instance
B(A « Bi,...,B,) of some program clause of P, for any w € W being an
L-instance of @, M,w F (A <« Bi,...,By,). Suppose that M,w F B; for all
1 < i < n. We show that M,w E A.

Let A = w = (E1)iy ... (Eg)i,. We first show that for any ground simple
atom B of the form E, O;F, or O;FE, if M,w F B then AB is an L-instance of
some atom from Saty (I). Suppose that M,wE B. If k > 1 and i = i}, and g(i)
is a singleton, then let v = (E1);, ... (Ex—1)i,_,, else let v = w.

If B = E, then by Lemma 3, some O-lifting form of AB belongs to Extr (1),
and hence AB is an L-instance of some atom from Satr,(I).

Now suppose that B = 0, E. Let u = v(T); and A’ = v0;. We have R;(w, u),
and hence M,u F E. By Lemma 3, it follows that some O-lifting form of A'E
belongs to Extr(I). Hence, AB is an L-instance of some atom from Saty,(I).

Next, suppose that B = &, E. Consider the case w # v (i.e. i = iy and g(i) is
a singleton). Since M, w E B, there exists F' such that v(F'); is a world of M and
M,v(F); E E. Let A" = v(F');. By Lemma 3, some O-lifting form of A’ E belongs
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to Extr(I). Hence, by the rules (2) and (3) of Satr, AB is an L-instance of some
atom from Satr(I). Now consider the case w = v (i.e. k = 0 or ¢ # iy or g(7)
is not a singleton). Since M, w F <, E, there exists u = w(Fy);, ... (Fp);, such
that M,ukE E, h > 1, and g(I) C g(i) for all I € {j1,...,Jn}. By Lemma 3, some
O-lifting form of w(F1);, ... (Fr);, E belongs to Extr(I). It follows that some
O-lifting form of A(F1);, ... (Fh);, E belongs to Satr(I). By the rules of Saty,
some O-lifting form of A<, E belongs to Saty,(I). Hence AB is an L-instance of
some atom from Saty, ().

Since M,w E B; for 1 < i < n, it follows that AB; is an L-instance of
some atom from Satr(I). Consequently, AA is an L-instance of some atom o
from T,1, p(Satr(I)). Let o be the L-normal form of «, i.e. NFy({a}) = {a'}.
We have o € Tp p(I) C I. By Lemma 4, M,0 E o'. If ¢/ = « then we can
derive from M,o E o that M,w F A. Suppose that o’ # a. Thus, « is of the
form A"V,;V,E, where A"V; = A, ¢(i) is a singleton, and V} is O; or (E);. If
Vi = (E); then A = &, E. We have that o/ = A”V/E. Since M, 0 F o and g(4)
is a singleton, it follows that M,o F A”0O;A. Hence M,w E A. This completes
the proof.

Proof of Lemma 2 Let (W, 7, Ry,..., Ry, H) be the standard L-model graph
of I, @ = 0, ...0;, be a modality, and w = (T);, ... (T);,. Suppose that «
is of the form ®E. Since M F «, we have M,w F E. Hence, by Lemma 3,
BE € Extr(I), and we also have @E € Satr(I). Now suppose that « is of
the form @<;E with the property that if g(i) is a singleton then ¢ # i;. Since
M E «, we have M,w F O,E. Hence there exists v = w(F1)j, ... (Fh);, such
that E € H(u), h > 1, and g(I) C g(¢) for alll € {j1,...,7n}. By Lemma 3, some
O-lifting form of w(Fy);, ... {(Fr);, E belongs to Exty(I). It follows that some
O-lifting form of @(F);j, ... (Fh);, E belongs to Extr(I) and Satr(I). Hence
@<, F is an L-instance of some atom from Saty,(I).

We have proved Lemmas 1 and 2, which completes the proof of Theorem 1.

6 Conclusions

Our contributions in this paper are: the schema for semantics of KD41;5,-
MProlog given in Table 1, proofs of the soundness and completeness of SLD-
resolution for KD41,5,-MProlog, and a formalization of the wise men puzzle
in the purely logical formalism of KD4I,5,-MProlog together with its SLD-
refutation.

In this text, we recalled a large number of definitions and constructions from
[22] (which in turn is an extension of [19]) in order to make the paper self-
contained and understandable. This does not reduce the originality of the above-
mentioned contributions.

The SLD-refutation given in Section 4.5 for the wise men puzzle does not
uses rules or properties involving with axiom (5,). Consequently, the puzzle can
be solved in the logic K D41, = K, + (D)4 (4)+(I4). The choice of K D415, is
justified as one of possible multimodal logics of belief and common/mutual belief
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that can be used to formalize the wise men puzzle. Our framework for modal
logic programming [22] is applicable for a wide class of multimodal logics and it
can be extended for other Kripke model semantics (e.g. with varying domain or
non-rigid terms).

This paper considers only one of different aspects of multi-agent systems. In
particular, we did not consider temporal dimension, actions, and events. Thus
the current version of MProlog is not yet an agent programming language like
AgentSpeak(L) [25], 3APL [13], and KARO [18]. To deal with the mentioned
aspects, possible solutions are to adopt CTL like the BDI-architecture [26], (con-
current) dynamic logic like the KARO system [18], or discrete linear temporal
logic. Extending MProlog with dynamic logic or discrete linear temporal logic is
possible, because such logics can be treated as modal logics. However, this is still
not sufficient for practical multi-agent systems. There remain a lot of problems
to be solved. In our opinion, multi-agent planning deserves for more attention.
Also, perhaps we should use rewards and penalties for cooperative and com-
petitive® multi-agent systems to deal with negotiation and cooperation. But in
that case, it seems not easy to adopt logics for specification and verification of
multi-agent systems.

In summary, this paper is on reasoning about common/mutual belief (which
was also considered in the paper [18] on KARO, but neglected in [26,25,13]). It
shows that the wise men puzzle can be nicely formalized in a multimodal logic of
belief using modal logic programming. Our system is goal-driven and we focused
on theoretical aspects like soundness and completeness.

References

1. H. Aldewereld, W. van der Hoek, and J.-J.Ch. Meyer. Rational teams: Logical
aspects of multi-agent systems. Fundamenta Informaticae, 63(2-3):159-183, 2004.

2. G. Attardi and M. Simi. Proofs in context. In J. Doyle, E. Sandewall, and
P. Torasso, editors, KR’94: Principles of Knowledge Representation and Reasoning,
pages 16—26, San Francisco, 1994. Morgan Kaufmann.

3. Ph. Balbiani, L. Farinas del Cerro, and A. Herzig. Declarative semantics for modal
logic programs. In Proceedings of the 1988 International Conference on Fifth Gen-
eration Computer Systems, pages 507-514. ICOT, 1988.

4. M. Baldoni. Normal multimodal logics with interaction axioms. In D. Basin,
M. D’Agostino, D.M. Gabbay, and L. Vigano, editors, Labelled Deduction, pages
33-57. Kluwer Academic Publishers, 2000.

5. M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic program-
ming. In Joint International Conference and Symposium on Logic Programming,
pages 52-66. MIT Press, 1996.

6. A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The ap-
proach and a case study. In M. Wooldridge and N.R. Jennings, editors, Proceedings
of ECAI-94, LNCS 890, pages 71-85. Springer, 1995.

7. N. de Carvalho Ferreira, M. Fisher, and W. van der Hoek. Practical reasoning for
uncertain agents. In J.J. Alferes and J.A. Leite, editors, Proceedings of JELIA 2004,
volume 3229 of LNCS, pages 82-94. Springer-Verlag, 2004.

5 Environment can be treated as a competitive agent.

95



8.

9.

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using
equational and order-sorted logic. Theoretical Comp. Science, 105:141-166, 1992.
J.J. Elgot-Drapkin. Step-logic and the three-wise-men problem. In AAAI, pages
412-417, 1991.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

L. Farinas del Cerro. Molog: A system that extends Prolog with modal logic. New
Generation Computing, 4:35-50, 1986.

M. Fisher and R. Owens. An introduction to executable modal and temporal
logics. In M. Fisher and R. Owens, editors, Fxecutable Modal and Temporal Logics,
1JCAI’93 workshop, pages 1-20. Springer, 1995.

K.V. Hindriks, F.S. De Boer, W. van der Hoek, and J.-J.Ch. Meyer. Agent pro-
gramming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357-401,
1999.

M. Kacprzak, A. Lomuscio, and W. Penczek. Bounded versus unbounded model
checking for interpreted systems (invited talk at FAAMAS’03). In B. Dunin-Keplicz
and R. Verbrugge, editors, Proceedings of FAAMAS’03, pages 5-20, 2003.

K. Konolige. Belief and incompleteness. Technical Report 319, SRI Inter., 1984.
J.W. Lloyd. Foundations of Logic Programming, 2nd Ed. Springer-Verlag, 1987.
J. McCarthy. First order theories of individual concepts and propositions. Machine
Intelligence, 9:120-147, 1979.

J.-J.Ch. Meyer, F.S. de Boer, R.M. van Eijk, K.V. Hindriks, and W. van der Hoek.
On programming KARO agents. Logic Journal of the IGPL, 9(2), 2001.

L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic
programs. Fundamenta Informaticae, 55(1):63-100, 2003.

L.A. Nguyen. Multimodal logic programming and its applications to modal deduc-
tive databases. Manuscript (served as a technical report), available on Internet at
http://www.mimuw.edu.pl/ nguyen/papers.html, 2003.

L.A. Nguyen. The modal logic programming system MProlog. In J.J. Alferes
and J.A. Leite, editors, Proceedings of JELIA 2004, LNCS 3229, pages 266—278.
Springer, 2004.

L.A. Nguyen. The modal logic programming system MProlog: Theory, design, and
implementation. Available at http://www.mimuw.edu.pl/ nguyen/mprolog, 2005.
A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish,
D. Pearce, and L.M. Pereira, editors, Proceedings of JELIA 94, LNCS 838, pages
365-378. Springer, 1994.

M.A. Orgun and W. Ma. An overview of temporal and modal logic programming.
In D.M. Gabbay and H.J. Ohlbach, editors, Proc. First Int. Conf. on Temporal
Logic - LNAI 827, pages 445-479. Springer-Verlag, 1994.

A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proceedings of the 7th FEuropean Workshop MAAMAW, volume 1038 of LNCS,
pages 42-55. Springer, 1996.

A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture.
In KR, pages 473-484, 1991.

R.A. Schmidt and D. Tishkovsky. Multi-agent logic of dynamic belief and knowl-
edge. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of
JELIA’2002, volume 2424 of LNAI, pages 38—49. Springer, 2002.

W. van der Hoek and J.-J. Meyer. Modalities for reasoning about knowledge and
uncertainties. In P. Doherty, editor, Partiality, Modality, and Nonmonotonicity.
CSLI Publications, 1996.

o6



Decision Procedure for a Fragment of Mutual Belief
Logic with Quantified Agent Variables

Regimantas Pligkeviius and Aida PligkeviCieng

Institute of Mathematics and Informatics
Akademijos 4, Vilnius 08663, LITHUANIA
{regis, aida@ktl.mi.lt

Abstract. A deduction-based decision procedure for a fragment of mutual be-
lief logic with quantified agent variabled{BQL) is presented. A language of

M BQL contains variables and constants for agents. The languafe@3ip) L is
convenient to describe properties of rational agents when the number of agents is
not known in advance. The multi-modal logi¢ D45,, extended with restricted
occurrences of quantifiers for agent variables is a componéwtB€) L. For this

logic loop-check-free sequent calculus is proposed. This calculus corresponds to
contraction-free calculus and does not require to translate sequents in a certain
normal form. Another new point of presented decision procedure is existentially
invertible separation rules. For a sequent containing occurrences of mutual belief
modality two type of loop-check can be used: for positive occurrences of mutual
belief modality loop-check can be used to find non-logical (loop-type) axioms,
and for negative ones — to establish a non-derivability criterion.

1 Introduction

Mutual belief (common knowledge) logics are multi-modal logics extended
with mutual belief (common knowledge) and everybody believes (everybody
knows) modalities. Sequent-like calculi (with analytic cut rule instead of loop-
type axioms) and Hilbert-style calculi for propositional common knowledge
logics (based on finite set of agents) are constructed in several works (see, e.g.,
[1], [4], [11]). In [6] Hilbert-style calculus for common knowledge logic with in-
finite set of agents is presented. This calculus involves some restrictions on car-
dinality of set of agents and contains rather complex axiom for everybody knows
operator. Propositional Hilbert-type calculus for mutual belief logic (based on
finite set of agents) is constructed in several works (see, e.g., [2]).

Propositional agent-based logics are often insufficient for more complex
real world situations. First-order extensions of these logics are necessary when-
ever a cardinality of an application domain and/or the number of agents are not
known in advance. In [14] it is described a rich lodi©ORA (Logic of Ratio-
nal Agents), based on a three-sorted first-order logic (containing variables for
agents, actions and other individuals), multi-agBd®/ logic, and a dynamic



logic. In [10] a logic@ L B (quantified logic for belief) with Barcan axiom con-
taining variables for agents and other individuals is presented. The same idea as
in [10] and [14], namelyuse of term as an agens utilized in term-modal log-

ics [5]. In [13] a decision procedure for a fragment of temporal logic of belief
and actions with restricted occurrences of quantified agent and action variables
is presented.

In this paper, a fragment of mutual belief logic with quantified agent vari-
ables (M BQL) is considered. Different from [5], [10] and [14], the language of
M BQL does not contain function symbols. The aim of this paper is to present
a deduction-based decision procedureX¥bB(Q L. The presented decision pro-
cedure is based on sequent-like calculd$3() with invertible rules (in some
sense). Separation rules is an important point of presented decision procedure.
These existentially invertible rules incorporate “bad” quantifier rules for agent
variables, the rules for everybody believes modality, and rules for belief modal-
ities. Some deduction tools similar to separation rules are used informally in
[12] for propositional (single agenf} D1 logic. A decision procedure for logic
K D45, extended with restricted occurrences of quantifiers for agent variables
is another important point. For this logic loop-check-free sequent calculus is
proposed. This calculus corresponds to contraction-free sequent calculus. How-
ever, loop-check-free type sequent calcudlifers from contraction-free se-
guent calculus. In contraction-free sequent calculus (see [3], [7]) duplication of
the main formula in the premise of a rulegbminated at all In loop-check-free
sequent calculus duplication of the main formula in the premise of a ruletis
eliminatedbut applications of rules containing such duplicationsrastricted
It allows to eliminate loop-check and does not require to translate sequents in a
certain normal form as in [7]. For a sequent containing occurrences of mutual
belief modality two type of loop-check can be used: for positive occurrences of
mutual belief modality loop-check can be used to find non-logical (loop-type)
axioms, and for negative ones — to establish a non-derivability criterion.

Here a procedural approach of decidable logical calculi is used and we as-
sume that the notions of a decidable calculus and a deduction-based decision
procedure are identical.

The paper is organized as follows. In Section 2, the language and the seman-
tics of theM BQ L are presented. In Section 3, auxiliary tools for the presented
decision procedure are described. In Section 4, a decision algorithm is presented
relying on the sequent calculdd B@) and some examples demonstrating the
presented algorithm are given. In Section 5, a foundation of the decision algo-
rithm is given.
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2 Language and semantics oM BQL

The M BQ L consists of the multi-modal logi&” D45,, (doxastic logic or weak-
S5,,) extended with restricted occurrences of quantifiers for agent variables and
logic containing mutual belief and everybody believes modalities [2].

The languageof M BQL contains: (1) a set of propositional symbdbs
Py, ..., Q,Q1, ... (2) asetof agent constantsiy, . .., ay,...,b1,..., (1,1,
a;j,b; € {1,...}); (3) a set of agent variables z1,...,y,y1,...; (4) a set
of belief modality of the shap@(¢), wheret is an agent term, i.e., an agent
constant or an agent variable; everybody believes modaliB; mutual belief
modality MB; (5) logical operatorsD, A, V, =, V, 3.

Formulaof M BQL is defined inductively as follows: every propositional
symbol is formula; ifA, B are formulas, thedl D B, AA B, AV B, =(A) are
formulas; ifi is an agentA is a formula, thenB(7) A is a formula; ifz is an
agent variabled is a formula,@Q € {V, 3}, thenQx B(z) A is a formula; ifA is
a formula, thenEB(A) and MB(A) are formulas. The formula is alogical
one if A contains only logical operators and propositional symbols.

As it follows from definition of formula, we do not consider, for exam-
ple, expressions of the shape3dy B(x) B(y)A, but expressions of the shape
Va B(x)3y B(y)A are considered.

When the formula under consideration contains occurrences of operators
EB and/orMB it is assumed that the number of agentirige. In this case the
formulaVz B(z) A means informally the same as the formpgd, B(i)A and
the formuladz B(z)A — as the formula/}’; B(i)A. Since the exact number
of agents is not knowim advancein general, we use formulas with quantified
agent variables.

The formulaB(i) A means “agent believesA”. Formal semantics of the
formula B(7) A satisfies the semantics of the logid)45,,. The formulaEB(A)
means “every agent believe¥’, i.e. EB(4) = A, B(i)A. The formula
MB(A) means: ‘A is mutual belief of all agents”. Therefore we use only so-
called public mutual belief modality and assume that therg@ésfect commu-
nication between agents. The formulsIB(A) has the same meaning as the
infinite formula\ ., EB*(A), where EB!(A) = EB(A), and EB*(A) =
EB*~!(EB(A)), if £ > 1. Infinitary nature of the modalityMB is explained
in [14]. The modalitiesMB and EB behave as modality of logi& D4. In
addition, these modalities satisfy an induction-like property:

EB(A) A MB(A D EB(A4)) D MB(A).

All belief modalities can be nested. For example, formBé&,) B(i2) P,
where P is a proposition “John is a good programmer”, means “ageue-
lieves that ageni, believes that John is a good programmer”. The formula
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Jz B(z)Yy B(y) P, whereP means the same as above, means “some agent be-
lieves that each agent believes that John is a good programmer”.

To define the formal semantics of the formula: B(z)A (Q € {V,3})
we must present an interpretation of agent variables. Such interpretation is re-
ceived by means of an assignmeWt— D (agent assignment), wheié is a
set of agent variabled) is a domain of agent constants. A modélis a pair
< Z,a >, where a is an agent assignment, is a tuple< D, St,7,R >,
whereD is a domain of agent constanfs, is a set of statest is an interpreta-
tion function of the propositional variableR; is the accessibility relations. All
these relations satisfy transitive, serial, and Euclidean properties.

The concept “formul& is valid in M =< 7, a > at the statg € St” (in
symbolsM, s = A) is defined by induction on the structure of the formula of
MBQL. Let us define only the cases whdris Qz B(z) N, where@ € {V,3}
(other cases are defined analogously as in [2], [4], [11], [14]).

M,s E VaB(z)N if and only if for every agent assignment which
differs from a at most with respect to an agent constart Z, a’ > = B(i)N;

M, s = 3z B(x)N if and only if for some agent assignmeat which dif-
fers from a at most with respect to an agent constart Z, a’ > = B(i)N;

Along with formulas we considesequentsi.e., formal expressiondy, . . .,

Ay — By,...,B,, whereAy, ..., A; (B1,...,B,;) is a multiset of formulas.
The sequent is interpreted as the form;qllg1 A; OV, Bj. AsequentSis a
logical one ifS contains only logical formulas.

Let us recall the notions of positive and negative occurrences.

A formula (or some symbol) occupositivelyin some formulaB if it ap-
pears within the scope of no negation sign or in the scope of an even number
of the negation sign, once all the occurrenceslab C have been replaced by
- AV C;in the opposite case, the formula (symbol) ocawegativelyin B. For
asequens=A4,,...,A;— B1,..., B, positive and negative occurrences are
determined just like for the formulA™, A; > Vi Bj.

3 Some Auxiliary Tools of the Decision Algorithm

A presented decision procedure is based on a sequent calculus with invertible
rules. All derivations are constructed as a backward derivations. In this section,
we present the main auxiliary tools of the decision algorithm: logical calculus,
reduction and separation rules, and contraction rules.

Let (5) be any rule of a sequent calculus. Ry¢ is applied to get the con-
clusion of(j) from the premises ofy). If rule (j) is backward applied, i.e., to
get premises ofj) from the conclusion ofj) we have a “bottom-up applica-
tion of (7)” instead of “application of j)”. The rule(j) is calledinvertiblein a
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sequent calculug, if the derivability in I of the conclusion of j) implies the
derivability in I of each premise ofj). If the rule(j) is invertible, the bottom-
up application ofj) preserves the derivability.

A decidablecalculus Log is defined by the axioml’; A — A, A (where
A is the main formula of the axiom) and traditional invertible rules for logical
operators, V, A, —.

A derivation in the calculud.og is constructed as a tree using the bottom-
up applications of the rules. A derivatidn is successfuif each leaf ofD is an
axiom andunsuccessfuf there exists a leaf which is not an axiom.

Let us define reduction rules by means of which a sequent is reduced to a
set of sequents in some canonical forms (see below).

Reduction rulesconsist of the following rules:

— Logical rules: all the rules of the calculdsg and the following rules:

I — A, Ab/a] Alb)z], [ — A

I'—-AVvVzA =v) JzA, I'— A (3-),

where the variable is agent variable and agent constaftalled an eigen-
constant) does not enter the conclusion of the rules.
— Rules for mutual belief:

EB(A), EB(MB(A)),I — A

MB(A), I — A (MB —)
I — A, EB(A); I' — A, EB(MB(A))
I — A, MB(A) (= MB).

— Rule for everybody believes:
I — A N-, B(i)A

I' - A EB(A)
Remark 1 We do not introduce reduction rule for everybody believes operator

(corresponding to implicatiorEB(A) D A, B(i)A, wheren is a number of
agents) because it is included in separation rules (see below).

(— EB), wheren is a number of agents

To define the separation rules some canonical forms of sequents are introduced.
A sequentS is a primarysequent, ifS is of the following shape:
X1,VBI', EBII;, MBA, — X5, 3BA, EBII,, MBA,, where
— foreveryi (i € {1,2}) X; is empty or consists of logical formulas;
— VBI' denotes a listz B(z)[y, B(1)I1,..., B(n)I,, where
Va B(x)Iy (denoted a®; below) is empty or consists of formulas of the
shapevz; B(z;)M;, j € {1,2,...}; B({)I;, 1 < | < n, is emptyor
consists of formulas of the sha@&(!)C;
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— dBA denotes a lisiz B(z)Ap, B(1)A, ..., B(n)A,, where
Jdz B(x)A4, is empty or consists of formulas of the shape; B(z;)N;
je{1,2,...}; B(r)A,, 1 <r < n, is emptyor consists of formulas of
the shapeB(r)D;

— for everyi (i € {1,2}) EBII; (MBA4;) is empty or consists of formulas
of the shapeEB(A) (MB(A), correspondingly).

A sequentS is areduced primarysequent, ifS is a primary one not containing
MBA; butI', A, ITy, IT; may contain modalityM B.

A reduced primary sequeist is an EB-pure reduced primaryne if S is
of the following shapeX, O+, Bf, EBII, — X5, EBII,, where (1)©; =
Ve B(z)Iy; (2) BI is empty or denotes a lisB(1)17, ..., B(n)I}, such that
n is a number of agents and feveryl (1 < I < n) B(l)I} is not empty
(3) at least one fronEBII;, EBII, is not empty. Otherwise, the sequéhis
non-EB-pure reduced primargne.

From the shape of the primary sequent it is easy to see that bottom-up apply-
ing logical rules each sequent can be reduced to a set of primary sequents. As
it follows from the shape of reduced primary sequent, bottom-up applying all
reduction rules each primary sequent can be reduced to a set of reduced primary
sequents.

To avoid loop-check in considered extension of the loFi®45,, let us
introduce marks of two sorts and indices. The marks are used in separation
rules for modalitiesB(¢) and EB. Thefirst sort markhas the shap®™* (Y* ¢
{B*(t), EB*, MB*}). The first sort mark is defined as follows: let a formula
A is in the sphere of action of a marked modal¥y. Then an occurrence of
any modalityY (¥ € {B(t), EB, MB}) in A is marked by the first sort
mark andY** = Y*. Both positive and negative occurrences of moddlity
may contain the first sort mark. Theecond sort markas the shapd~ ().

Only positive occurrences of belief modali$(¢) in a sequent may contain

the second sort mark. This mark is essential to get loop-check-free derivations
in considered extension of the logi€ D45,,. Besides marked modalities we
useindexed formula®f the shapedz® B*(2°)A, where3z° € {@,3x} and

x° =i if 32° = @; an indexk is empty ork € {x°1,...,*°m}, wherex® €

{@, x}. Only positive occurrencesf formulas of the shapgz® B(z°)A in the
succedent of a sequent may contain the indices. In the ikdekthe shape

x°[ [ denotes a number of bottom-up applications of a separation rule for belief
modality with the same main formula.

Let us introduce separation rule for everybody believes mod&liB. The
conclusion of this separation rule isEB-pure reduced primary sequent, such
that logical part2; — X5 is not derivable in the calculusog.
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Separation rule (SR;) for everybody believes modality EB:

@3, Iy, B I, I", EB*IT, IT; — A°
1,04, BI', EBII, — Y, EBII,, EB(A°)

(SRy),

where®; and BI are determined in the definition dEB-pure reduced pri-
mary sequentj” (obtained fromBI") denotes a list}, ..., I},, wheren is a

number of agentsEB(A°) € {@, EB(A)}; if EBIl;, EB(A°) is empty,

then A° is empty, otherwisel® = A.

The formulaEB(A) in the rule(SR;) is themain formulaof this rule.

Let us introduce two separation rules for belief modalBy¢) denoted as
(SR2) and(SR3). The conclusion of these separation rules is a reduced primary
sequent, such that logical pary — Y5 is not derivable inLog.

Separation rule (SRy) for belief modality B(¢):

3, Iy, B*(I)I}, I}, EB*IIy, IT, — @4, B(r)A,,32° B (z°)M, M
El,VBF, EBHl HEQ,HBA, dx° Bk(xO)M, EBH2

(SRy),

whereV BI', 3BA, and®; are determined in the definition of primary sequent;
®2 meansiz B(x)A,.

The formuladz® B*(x°) M is themain formulaof (SRy); 32° € {@, 3x}.

To define an index let us consider two cases.

(1) 3z° = @, thenz® =i and3z° B*(2°) M has a shapd”(i)M. In this
casd =r=i,i.e., B(l)[;and B(r) A, consist of formulas of the shag® (i) D.
The indexo is defined in the following way. Let (1) be the number of negative
(positive, correspondingly) occurrences of modalitBs:), EB, MB in M;
let 79, 71,..., T, Tmt+1 D€ the number of negative occurrences of modalities
B(i), EB, MBin Iy, I1,..., I, I, respectively, and = max(7o, 71, . . .,
TnyTnt1), p/ = max(p — n,7 — n). Thenk € {x°0,...,+°p’} (wherex° €
{2, x}), at the very beginning is empty and is treated as0. The indexo is
defined as follows: it = x°I, [ € {0,...,p’} andl < p’ theno=x°(l + 1);
otherwise, i.e., ik=x*°l andl=p’, thenoc=—.

(2) 3z° =3z. In this case all pairs consisting frolB({)I; (1 <! < n) and
B(r)A, (1 < r < n) must be reset. The indexis defined in the same way
as in the case (1) replacing a modalB/(i) with B(t), wheret is any agent
variable or any agent constant.

The separation ruléSR,) corresponds to transitivity and Euclidean prop-
erties of belief modality.

Separation rule (SR3) for belief modality B(¢):

G{a FU> B*(l)FhFl, EB*Hla Hl -
¥..VBI, EBII, — %5, 3BA, EBII,

(SR3)7
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whereV BI', 3BA, and®; are the same as in the rl6 Ry).

The rule(SR3) corresponds to the serial property of belief modality.

During the reduction to primary and reduced primary sequents the following
contraction rules are used.

Contraction rules. The rule allowing to replacel, A; with A (where A
and A, coincide or are congruent ones [9]) is an ordinary contraction rule. The
rules allowing to replacé3*(t)A, B°(t)A, whereo € {@,*}, with B¥(¢)A,
to replaceB*(t)A, B~ (t)A with B=(¢)A, and to replacér*A, Y A, where
Y € {B(¢), EB, MB}, with Y*A are marked contraction rules. Contraction
rules are backward appliéchplicitly (together with other rules).

Some examples in next section demonstrate an application of the separation
rules and the use of the marks/indexes.

4 Description of Decision Algorithm

In presented decision procedure for the extension of the |&gi#t5,, loop-
check-free sequent calculus is proposed. Such type calculi correspond to contrac-
tion-free calculus for modal logic. For a sequent containing different occur-
rences of mutual belief modalitiviB two kind of loop-check (saturation) are
used: for positive occurrences of mutual belief modality loop-check is used to
find non-logical (loop-type) axioms, and for negative ones loop-check (called
degenerate saturation) is used to establish a non-derivability criterion.

So, along with the logical axioms, we use non-logical (loop-type) axioms (as
in other works on temporal and agent-based logics with induction axioms, see,
e.g., [12], [13]). First we define parametrically identical formulas and sequents.
Namely, formulasd and A’ are called parametrically identical ones (in symbols
A =~ A)if either A = A’, or A and A’ are congruent [9], or differ only by
the corresponding occurrences of eigen-constants of the (uleg), (3 —);
moreover , the occurrences of modalifyand marked modality*, whereY <
{B(t), EB, MB}, are treated as coinciding. Sequefts= Aj,..., Ay —
Apits ooy Agymands’ = Ay, AL — AL, Ay, are parametrically
identical (in symbolsS ~ §'), if Vj (1 < j < k + m) formulasA; and A’; are
parametrically identical ones. We say that a seqéenrt I' — A subsumes a
sequents’ = II,I" — A’,© (in symbolsS = S")if ' - A~ 1" — A’ (in
special case$=.5"). A sequentS’ is subsumedby S.

To obtain a negative criterion of derivability for the extension of the logic
K D45, let us introduce a notion @ffinal sequent.

A primary sequent of the shap®,,VB5B*I", EB*I[;, MB*A; — X5,
3B~ A (in special casel;, 35~ A is empty), such that logical part of this se-
quent, namelyY; — X is not derivable in the calculusog, is b-final sequent.
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Let D be a derivation in some calculus ahlde a branch irD. The primary
sequentS = I — A from the branchi is asaturatedsequent if, in the branch
abovesS, there exists a subsumed Byprimary sequens’, i.e., S = 5.

Let S =2X4,VBI', EBII;, MBA, — X5, EBII; be a saturated primary
sequent in a derivatio. ThenS is degenerated saturateghe if in D there
exists a subsumed by primary sequent’ of the shapeX;,VB5*I’, EB*II],
MB*A] — X4, EB°II, (o € {@,x*}) such that (1) logical part af’ is not
derivable in the calculugog; (2) II; does not contain any positive occurrence
of modality MB.

A saturated primary sequefits MB- saturatedf S = I" — A, MB(A).
Sequents subsumed by & B-saturated sequent will be used as non-logical
axioms.

The decision algorithm for an arbitrary sequent is realized by means of a
calculus for mutual beliefX/ BQ).

Calculus M BQ:

A calculusM BQ is obtained from the calculuog adding the separation
rules(SR;) (1 <1 < 3), the reduction rules, contraction rules, and non-logical
axioms of the shapg — A, MB(A).

A derivation D in the calculusM B(Q is anordered derivationif it consists
of several levels and each level consists of bottom-up applications of reduction
rules. In this derivation at each level, when a set consisting of only reduced pri-
mary sequents is received, pbhssiblebottom-up applications of the separation
rules to every reduced primary sequent are realized. Each bottom-up application
of the separation rules provides a possibility to construdiffarent(in general)
ordered derivatiorD;. (k > 1). Let in the levelj it be possible to bottom-up
apply the rule(SR3) using as the main formula of this rule several formulas,
namely,3x{B(x9) M, ..., 3z B(zy)M,. In this case as the main formula of
(SR2) we choose a such formul$ B(z7)M; which was previously used as
the main formula of this rule in the level — k& (kK > 1). A such tactic of
construction of an ordered derivation is calticectedone. To eliminate redun-
dancy from constructed ordered derivation in each level we do not consider (for
a while) a sequent which is subsumed by some sequent in the level.

The ordered derivatio®,, is a successful one, #achleaf of D, ends with
axiom (either logical or non-logical). The notion of logical axiom is obvious.
Let us consider the notion of non-logical axiom in more detail. Let in ordered
derivationD there exists reduction of a primary sequent of the sttapel” —

A, MB(A) to a set of primary sequents,, . .., .S,, where sequen$;, (1 <
k < p) has the shapél, I, — 6, A}, MB(A') and is such thal’ — A ~
Il — Aj andA ~ A’. The sequen$ belongs ta-th level of D andS), belongs
to (i + 1)-th level of D (I > 1). Then the sequentS;, are considered as non-
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logical (MB-loop-typg axioms of M BQ. In Section 5 it will be justified that
non-logical axioms are founded automatically and consist of some parts of an
end sequent ab.

If thereexistsan ordered derivatioP of sequents such that in a leaf adach
branchi of D there is either a logical axiom, or a non-logical axiom, then in both
these cased! BQ + S (positive criterion of termination of the procedure). If in
all possible ordered derivatiorig;, of a sequens thereexistsa branch having
a sequent which is either non-derivableling or degenerated saturated one or
b-final one, then\/ BQ ¥ S (negative criterion of termination of the procedure).

In the next section it will be justify that for any sequent a process of con-
struction of an ordered derivation always terminates and proceeds automatically.

Bottom-up application of the reduction rule> MB) isinduction-freeone,
if the left premiseS’ of this rule has a shapg — A, EB(A), whereA, A do
not contain positive occurrences of modalMB. If A/ BQ - S’ andD does
not contain non-logical axioms then this bottom-up applicatisuiscessful

From the notion of an ordered derivationifi BQ) we get the following

Lemma 1 (derivability criterion in M B(Q) Let S be an arbitrary sequent.
ThenMBQ P S if and only if each induction-free bottom-up application
of the reduction ruld— MB) in D is successful.

Let (SRy) be the rule obtained from the rul6 Rz ) changing a definition of
the indexo. Namely, le3z° B¥(2°) M be the main formula of the rulgs RJ ),
andk € {x°0,%°1,...} (wherex®° € {&,*}), at the very beginning is empty
and is treated ag’0; if £ = *°/ theno ==°(I + 1). Let a calculusM BQ" is
obtained fromM BQ adding the rulé SR ). An application of the rul¢SRJ)
in M BQ™ is degenerate if > p’ + 1, wherep’ is determined in the same way
as in the rulg SRy).

Analogously as in [13] using induction on number of the degenerate appli-
cation of the rulg SR; ) we can prove

Lemma2 If MBQ™' + SthenMBQF S.

From Lemma 2 and relying on directed tactic in construction of ordered
derivation we get

Lemma 3 Let D be an ordered derivation id/ BQ. Let X1,V BI', EBII —
XY, 3BA,3z° B¥(2°) M, EBII, be a conclusion of an application of the rule
(SRy) in D. Then the same positive occurrence of the formidaB* (z°) M
may be the main formula of applications of the separation ($l&2) in D at
mostp’ + 1 time, wherep’ is defined in the ruléSR).
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Let us demonstrate saturation-free ordered derivation®&/ iBQ, i.e., all
branches of constructed ordered derivations end with logical axioms.

Example 1 (a) LetS = B(1)P — B(1)B(1)(P Vv Q). We can bottom-up
apply (SR2) or (SRs3) to S. Bottom-up applying SR3) to S we getb-final
sequentB*(1)P, P — . Let us consider the possibility to bottom-up apply
(SRy) to S. For S we havep = 0, n = 1, 7 = 0, andp’ = 0. There-
fore bottom-up applyingSR;) to S we getc = — andS; = B*(1)P,P —
B~ (1)B(1)(PVQ), B(1)(PV Q). Again, we can bottom-up apply R2) or
(SR3) to S;. Let us apply(SR2). We can bottom-up appl§SRz) to S; only
with B(1)(PV Q) as the main formula. Since féf; p’ = 0, we getr = — and

Sy = B*(1)P,P - B (1)B(1)(PVvQ), B (1)(PVQ),PVQ.Bottom-up
applying(— V) to S, we get an axiom. Thereforled BQ + S.

(b) LetS= B(1)EB(P) — B(1)(PV Q),ie.,forS p=0,n=0,7=1,
and p’ = 1. Therefore bottom-up applying Rs) to S we getoc =1 and S; =
B*(1) EB*(P), EB(P) — B'(1)(P Vv Q),(PV Q). Since forS; p’=1and
k=1, bottom-up applyindSR,) to S; we getS, = B*(1) EB*(P), EB*(P),
P — B~ (1)(PVvQ), PVQ.Bottom-up applying— V) to So we get an axiom.
ThereforeM BQ I S.

(c) LetS = B(1)EB(B(1)P) — B(1)A, whereA = -B(2)Q VvV P.
For S we havep = 0,7 = 0,7 = 2, and p’ = 2. Therefore bottom-up apply-
ing (SR2) to S we gete = 1 and, after applying(— V), (— —), we get
Sy = B*(1)EB*(B*(1)P), EB(B(1)P), B(2)Q — B'(1)A*, P. Since for
S1 p’ =2, bottom-up applyind SRy) and (— V), (— —) from S; we get
oc=2andS; = B*(1) EB*(B*(1)P), EB*(B*(1)P), B(1)P, B(2)Q —
B2(1)A, P. For Sy we get agairp’ = 2. Bottom-up applyindSR3), (— V),
(— —) from Sy we gete = — and S; = B*(1) EB*(B*(1)P), EB*(B*(1)
P), B¥*(1)P, P, B(2)Q — B~ (1)A, P. SinceSs is an axiom M BQ - S.

(d) Let {1,...,n} be a set of agent constants ar§i = B(1)P,
... B(n)P, — EB(\/,_, ). Bottom-up applyind SR;) and then(— V)
we get an axiom. Therefofed BQ + S.

(e) Let{1,2} be a set of agent constants asd= B(1)P — EB(P V
- B(2)P). Bottom-up applyindq— EB), (— A) from S we get reduced pri-
mary sequents; = B(1)P — B(1)(P v -B(2)P)and S, = B(1)P —
B(2)(P v = B(2)P). Bottom-up applyindSR2) and (— V) from S; we get
an axiom. Bottom-up applyingSRy) and (— V), (— —) from Sy we get
S3 = B(2)P — B!(2)(P Vv —~B(2)P), P. Bottom-up applying SRs) and
(— V) from S5 we get an axiom. Therefol BQ + S.
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Let us demonstrate negative criterion of termination, i.e., construction of or-
dered derivations id/ BQ containing a branch which ends wiikinal sequent
or containing a degenerated saturated primary sequent.

Example 2 (a) LetS =— JzB(z)A, whereA = -EB(P) v Q, i.e., forS
p =1landp’ = 1. Bottom-up applyingSR3), and then(— V), (— =) from
S we getS; = EB(P) — 3z B!(z)A, Q. Since forS; k=p’=1, bottom-up
applying(SR3), and then(— V), (— —) from S; we getS; = EB*(P), P —
Jx B~ (2)A, Q. Sy is not an axiom and ié-final. ThereforeM BQ ¥ S.

(b) Let S = EB(P), MB(A) — EB(Q), whereA = P D -EB(Q).
Bottom-up applying MB —) to S we getS; = EB(P), EB(MB(A4)),
EB(A) — EB(Q). Bottom-up applyingSR;) to S; we getS, = EB*(P), P,
EB*(A), A, EB*(MB*(A)), MB*(A) — Q. Bottom-up applying >—),
(= —) from Sy we get an axiom (withP as the main formula) ands =
EB*(P), P, EB*(A), EB*(MB*(A)), MB*(A) — EB*(Q), Q. SinceS
Ss, from the shape df; we get thatS is a degenerated saturated sequent. There-
fore MBQ ¥ S.

LetS’ be a sequent obtained from the sequgmneplacing the formulad by
P>-B(1)Q. Then we get derivation ending withhdinal sequent.

Let us demonstrate a derivation M BQ with M B-saturation, i.e., a con-
structed ordered derivation contains non-logical axioms along with logical ones.

Example 3 Let S be EB(Vz B(z)P), MB(A) — MB(3z B(x)P), where
A = 32 B(z)P D EB(VxB(x)P). The sequent is a modified version of
induction axiom for modalityM B.
Bottom-up applying— MB) to S we get two sequenty = EB(Vx B(x)P),
MB(4) — EB(3zB(z)P) and S, = EB(VzB(z)P), MB(4) — EB
(MB(3z B(x)P)). Bottom-up applyind MB —) to S; we get the sequent
S; = EB(VzB(z)P, EB(A), EB(MB(A4)) — EB(3z B(x)P). Bottom-
up applying(SR;) to S} we getthe sequest’ = VaB(z)P, A, MB(A), A —
Jz B(x)P,whereA = EB*(Vz B*(z)P), EB*(A), EB*(MB*(A)). Bottom-
up applying(>—) from S{ we get sequentS;; = VzB(x)P, MB(A), A —
Jz B(x)P andS12 =V B(z) P, EB(Vx B(x)P), MB(A), A — 3z B(x)P.
SinceS1; = Sio, at first we consider the sequeft;. Bottom-up applying
(MB —) from S1; we getS}; = Vz B(z)P, A — 32 B(x)P. Bottom-up ap-
plying (SR2) to S7; we get an axiom wittP as the main formula. Therefore
MBQ H SH. SinceSu >~ 512, MBQ F 512 as well.

Now let us consider the sequefit Bottom-up applying MB —) to S, we
getS, = EB(VzB(z)P), EB(A), EB(MB(4)) — EB(MB(3z B(z)P)).
Bottom-up applyindSR;) to S, we get the sequet] = Vo B(z)P, A, MB
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(A),A — MB(3zB(z)P). Bottom-up applying >—) to S; we get two
sequentsSy; = Va B(z)P, MB(A), A — 3z B(z)P, MB(32 B(z)P) and
Sog = VaB(z)P, EB(VxB(x)P), MB(A),A — MB(JzB(z)P). Since
S = Sy, Sis MB-saturated sequent. Now let us consider the seqfent
Bottom-up applying— MB) and then(MB —), (SR») in both branches of
(— MB) we get an axiom witl? as the main formula. Therefold BQ + S.

5 Foundation of Presented Decision Procedure

To justify the presented decision procedure, we must found: (1) termination of
the procedure, (2) invertibility of reduction and contraction rules, and existential
invertibility (see below) of the separation rules M BQ and (3) MB-type
saturated sequents as non-logical axioms. The termination will be founded by
means of finiteness of the so-call&dsubformulas of primary sequents which
are generated during the construction of an ordered derivation. Let us define the
notion of R-subformulas of a sequent.

Let S be a primary sequent and be a formula entering. A set of R-
subformulas of” from S is denoted agSub(C') and defined inductively.

1. RSub(P) = @, whereP is a logical formula.

2. RSub(EB(A)) = RSub(A).

3. RSub(—A) = RSub(A).

4. RSub(A ® B) = {RSub(A)} U {RSub(B)}, where® € {D, A, V}.

5 RSub(B(i)A) = {B(i)A} U {RSub(A)}.

6. RSub(MB(A))={ EB(MB(A))}U{RSub( EB(A))}.

7. RSub(QxB(x)A) = RSub(B(c)A), where@ is V(3) and @ occurs
positively (negatively) i, = is an agent variable ands a nhew agent constant.

8. RSub(QxB(x)A) = RSub(A), where@ is 3(V) and @ occurs po-
sitively (negatively) inS.

A set of R-subformulas of a sequeSt= Ay, ..., Ax — Agi1,..., Akim
is denoted byzSub(S) and defined aBSub(S) = UM RSub(A;). R*Sub(S)
denotes a set obtained froRSub(S) by merging parametrically identical for-
mulas.

From definition of R*Sub(S) we get that the seR*Sub(S) is finite. This
fact (along with Lemma 3) is crucial to obtain termination of presented proce-
dure.

Analyzing the construction of an ordered derivationMhB() we get that
the presented decision procedure is exponential-timeFsthet AC' E-complete,
i.e., during the construction of an ordered derivation of a seqtieve generate
the primary sequents the length of which can be restricted by some polynomial
depending orRR* Sub(.S).
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To justify the invertibility of reduction and contraction rules and the existen-
tial invertibility of the separation rules itf BQ an infinitary calculus\f BQ,, is
introduced M B(@,, is obtained from\/ B(Q) by dropping the non-logical axiom,
marks and indices in separation rules and replacing the reductiof+ullsIB)
by following infinitary rule:

I' - A EB(A);...;I" — A EB*(A);. ..
I — A, MB(A)

(— MB,),

ke {l,...}; EBY(A) = EB(A), EB*(4) = EB(EB* !(A4)), k> 1.

Using induction orO(D), whereO(D) is the height of a derivatiof [13]
of the conclusion of a reduction rule 1 BQ,,,, we can prove an invertibility of
reduction rules (including— MB,,)) in M BQ,,.

Using reduction rules it is possible to construct a reduction of seqtiémt
aset{Sy,...,S»}, whereS; (1 < j < m)is a primary (reduced primary)
sequent automatically. Using the invertibility of reduction rules we get that if
MBQ, - SthenMBQ, - S;,j € {1,...,m}.

It is easy to see that the separation rule®;) (I € {1,2,3}) are not in-
vertible in the usual way but they are existential invertible. The separation rule
(SR;) (I € {1,2,3}) is existential invertiblef from derivability of the con-
clusion of the separation rule5R;) follows that there exists at least one rule
(SR;) (1 <1 < 3) such that a premise of this rule is derivable. It is obvi-
ous that, in contrast to deterministic usual invertibility, existential invertibility is
non-deterministic.

Using double induction or: k(S), O(D) >, wherek(S) is a number of
positive occurrences of modalitivIB in an end-sequent of the derivatidn
we can prove an existential invertibility of separation rules.

Lemma 4 (existential invertibility of separation rules) LetS be areduced pri-
mary sequent, i.e.S = X1,VBI, EBIly, — X5, dBA, EBII,, such that
MBQ,t S andLog ¥ X1 — X5. Then either

— S is an EB-pure reduced primary sequent and there exists a seqgbient
such thatM BQ,, + Sy = ©%, Iy, BI", I, EB*II,, II; — A°, where the
sequents; is defined in the formulation of the rul& R, ), or

— there exists a formuldz°® B*(2°) M from 3 BA, such thatM BQ,, - Sz =
%, Iy, B* ()}, I}, EB*II}, I, — O3, B(r)A,,3z° B (z°)M, M,
where the sequerfi; and the index is defined in the formulation of the
rule (SRz), or

— there existg > 0 such that\/ BQ,, - S3 = O3, Iy, B(1)*I}, I;, EB*II;,
I1, —, where the sequesi; is defined in the formulation of the ru(& Rs).
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Using invertibility of the reduction and separation rules we can prove that
the contraction rules are invertible M BQ),,
Using Scliitte method (analogously as in [8]) we get

Theorem 1 (soundness and-completeness of\/ BQ),,) LetS be a sequent.
ThenvM = S < MBQ, + S. The cutrule is admissible il BQ,,.

From the fact tha/ BQ, + MB(A) = EB(4) A EB(MB(A)) and
admissibility of cut inM B@Q,, we get that the rul¢— MB) is admissible and
invertible inM BQ,,.

To get an equivalence between calciB(Q) and M BQ,, we introduce
invariant calculud N M BQ. To define this calculus let us introduce some aux-
iliary notions. LetM BQ FP S. Then a set oflMB-saturated sequents, i.e., the
sequents of the shagje— A, MB(A), in D is denoted bySat{S}. Let us de-
composeSat{S} into a set of set§at’{S} such that (15at{S} = U Sat*{S};

(2) Vij(Sat'{S} N Sat’{S}) = @, (3) if S1, S2 € Sat'{S}, thenS;, Sz have
a common succedent member of the shag8(A), which is called awucleus
of Sat'{S}. Every setSat*{S} is a component of decomposition §fit{S}.

An invariant calculusI N M B( is obtained from the calculud/ BQ) re-
placing the non-logical axioms by the following invariant rule:

I' - A I I — EB(I); I — EB(A)
I - A, MB(A)

(_> MBI)v

where the invariant formulé is constructed automatically.
The rule(— MB;) satisfies the following conditions:

— the conclusion of — MB;y), i.e., the sequent’ = I' — A, MB(A) is
suchthats’ € Sat'{S} andSat'{S}is {Xi1 — II;1, MB(A);...; Xy, —
II;,, MB(A)}, where MB(A) is the nucleus oSat*{S}, i.e., S’ is an
MB-saturated sequent from a derivation of a seq@eint M/ BQ);

-1 = jg((ﬂ&-j)A A =(VII;;)Y; let IT be any set of formulas of the shape
B(i1)Cy, ..., B(im)Cn, Wherei; (1 <1 <m))is anagent eigen-constant;
thenQII = Qz1B(x1)Ch,...,Qxy B(xm)Cn, Q@ € {V,3} (therefore
all the eigen-constants are correspondingly boundgd);"V) means the
conjunction (disjunction, respectively) of formulas fram

To prove that fromM BQ = S follows IN M BQ@ + S, a derivation of each
MB-saturated sequent iV M BQ must be constructed.

Example 4 Let S be the same sequent as in Example 3, i.e., has the shape
EB(VzB(z)P), MB(A) — MB(32B(x)P), whereA = JzB(x)P D
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EB(Vx B(z)P). From Example 3 it follows that is a MB-saturated se-
quent. From definition of the invariant formulawe get/ = EB(Vx B(z)P) A
MB(A). Itis easy to verify thaLog - EB(Vz B(x)P), MB(A) — I (1);

INMBQFI—EB(I); (2) INMBQFI—EB(A) (3).
Applying(— MBy) to (1), (2) and (3) we gefNM BQ + S.

Analogously as in [13] we get
MBQFS < INMBQF S < MBQ,F S (%).
From (*) we get that all reduction rules and contraction rules are invertible in
M BQ@ and the separation rules are existentially invertiblé4d Q).
From Theorem 1 and (*) follows that/ BQ) is soundandcomplete
Using these facts, finiteness Bf Sub(.S), and Lemma 3 we get the following

Theorem 2 Let S be an arbitrary sequent. Then one can automatically con-
struct a successful or unsuccessful ordered derivafibof the sequent in
M BQ such thatD always terminates.
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Abstract. Standard syntactic assignments (SSAs) model knowledge di-
rectly rather than as truth in all possible worlds as in modal epistemic
logic, by assigning arbitrary truth values to atomic epistemic formulae.
It is a very general approach to epistemic logic, but has no interesting
logical properties — partly because the standard logical language is too
weak to express properties of such structures. In this paper we extend
the logical language with a new operator used to represent the propo-
sition that an agent “knows at most” a given finite set of formulae and
study the problem of strongly complete axiomatization of SSAs in this
language. Since the logic is not semantically compact, a strongly com-
plete finitary axiomatization is impossible. Instead we present, first, a
strongly complete infinitary system, and, second, a strongly complete
finitary system for a slightly weaker variant of the language.

1 Introduction

In traditional modal epistemic logic [1,2], modelling knowledge as truth in all
possible states in a Kripke structure, agents know all the logical consequences
of their knowledge. It fails as a logic of the computed knowledge of real agents,
because it assumes a very particular and extremely powerful mechanism for
reasoning. In reality, different agents have different reasoning mechanisms (e.g.
non-monotonic or resource-bounded) and representations of knowledge (e.g. as
propositions or as syntactic formulae). Thus, a more general model of knowledge
would be useful. A general approach is to model knowledge directly rather than
as truth in all possible worlds. Standard Syntactic Assignments (SSAs) [1] is a
syntactic approach in which a formula K¢ is assigned a truth value independent
of the truth value assigned to any other formula of the form Kj;iy. SSAs are
generalizations of Kripke structures. In fact, it can be argued that SSAs is the
most general model of knowledge. However, SSAs are so general that they have
no interesting logical properties that can be expressed in the traditional language
of epistemic logic — indeed, they are completely axiomatized by propositional
logic.



In this paper, we extend the logical language with a new epistemic operator
i for each agent. \7; X, where X is a finite set of formulae, expresses the fact
that agent i knows at most X. The main problem we consider is the construction
of a strongly complete axiomatization of SSAs in this language. A consequence
of the addition of the new operator is that semantic compactness is lost, and thus
that a strongly complete finitary axiomatization is impossible. Instead we, first,
present a strongly complete infinitary system, and, second, a strongly complete
finitary system for SSAs for a slightly weaker variants of the epistemic operators.
The results are a contribution to the logical foundation of multi-agent systems.

In Section 2 SSAs and their use in epistemic logic are introduced, before the
“at most” operator v/; and its interpretation in SSAs is presented in Section
3. The completeness results are presented in Section 4, and we conclude and
discuss related work in Section 5. We presently define some logical concepts and
terminology used in the remainder.

1.1 Logic

By “a logic” we henceforth mean a language of formulae together with a satisfi-
ability relation |=. The semantic structures considered in this paper each has a
set of states, and satisfiability relations relate a formula to a pair consisting of
a structure M and a state s of M. A formula ¢ is a (local) logical consequence
of a theory (set of formulae) I', I' |= ¢, iff (M, s) = ¢ for all ¢ € I'" implies that
(M, s) = ¢. The usual terminology and notation for Hilbert-style proof systems
are used: I' Fg ¢ means that formula ¢ is derivable from theory I" in system .S,
and when A is a set of formulae, I' g A means that I' g § for each § € A. We
use the following definition of maximality: a theory in a language L is maximal
if it contains either ¢ or —¢ for each ¢ € L. A logical system is weakly complete,
or just complete, if = ¢ (i.e. O = @, ¢ is valid) implies Fg ¢ (i.e. § Fg ¢) for all
formulae ¢, and strongly complete if I' = ¢ implies I' g ¢ for all formulae ¢ and
theories I'. If a logic has a (strongly) complete logical system, we say that the
logic is (strongly) complete. A logic is semantically compact if for every theory
I, if every finite subset of I" is satisfiable then I" is satisfiable. It is easy to see
that under the definitions used above:

Fact 1 A weakly complete logic has a sound and strongly complete finitary
axiomatization iff it is compact.

2 The Epistemic Logic of Standard Syntactic
Assignments

Standard Syntactic Assignments (SSAs) are defined and interpret the standard
epistemic language, as follows. Given a number of agents n we write X' for the
set {1,...,n}.

Definition 2 (£) Given a set of primitive propositions @ and a number of
agents n, £(6,n) (or just L) is the least set such that:
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—OCL
— If ¢,9 € L then ¢, (p A) € L
—IfgeLandie X then K;p € L O

The set of epistemic atoms is LA* = {K;¢: ¢ € L,i € X}. An epistemic formula
is a propositional combination of epistemic atoms. An SSA assigns a truth value
to the primitive propositions and epistemic atoms.

Definition 3 (Standard Syntactic Assignment) A standard syntactic as-
signment (SSA) is a tuple
(S,0)

where S is a set of states and
o(s): O U LA — {true, false}
for each s € S. 0O

Satisfaction of an £ formula ¢ by a state s of an SSA M, written (M, s) = ¢,
is defined as follows:

(M,s) =p < o(s)(p) = true
M,S)F_‘(ZS - (M,S)l#(b
M,s) = (¢ N) A (M,s) & ¢ and (M,s) E ¢

(
(
(M,s) = K;¢ & o(s)(K;¢p) = true

We note that although [1] define SSAs in a possible worlds framework, the
question of satisfaction of ¢ in a state s does not depend on any other state

(((S,0),8) = ¢ = (({s},0),5) = ¢).

SSAs are very general descriptions of knowledge — in fact so general that no
epistemic properties of the class of all SSAs can be described by the standard
epistemic language:

Theorem 4 Propositional logic, with substitution instances for the language L,
is sound and complete with respect to SSAs. ]

In the next section we increase the expressiveness of the epistemic language.

3 Knowing At Most

The formula K;¢ denotes that fact that ¢ knows at least ¢ — he knows ¢ but he
may know more. We can generalize this to finite sets X of formulae:

NX = \{Kig: ¢ € X}

representing the fact that ¢ knows at least X. The new operator we introduce?
in this paper is a dual to A;, denoting the fact that i knows at most X:

ViX

3 A similar operator is also used in [3] and [4].
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denotes the fact that every formula an agent knows is included in X, but he may
not know all the formulae in X. If £ was finite, the operator 37; could (like A;)
be defined in terms of Kj:

viX = \{-Ki¢: ¢ € £\ X}

But since £ is not finite, s/; is not definable by K;. We also use a third, derived,
epistemic operator: {; X = A\; X A 7; X meaning that the agent knows exactly
X. The extended language is called L.

Definition 5 (L) Given a set of primitive propositions ©, and a number of
agents n, Lo,(0,n) (or just L) is the least set such that:

-OCLy

—If ¢,¢ € L, then —¢, (9 AY) € Ly,

—Ifgpe Landiec X then K;¢ € L,

— If X € p™(L) and i € X then ;X € Lo O

The language L (©,n) is defined to express properties of SSAs over the
language £(©,n) (introduced in Section 2), and thus the epistemic operators K;
and 7; operate on formulae from £(©,n). We assume that © is countable, and
will make use of the fact that it follows that £, (©,n) is (infinitely) countable.

If X is a finite set of L, formulae, we write A; X as a shorthand for /\¢€X K;o.
In addition, we use {; X for A;X A s7; X, and the usual derived propositional
connectives.

The interpretation of L, in a state s of an SSA M is defined in the same
way as the interpretation of £, with the following clause for the new epistemic
operator:

(M,s) =X & {¢p € L:0(s)(K;¢) =true} C X
It is easy to see that

(M,s) EANX & {p € L:0(s)(K;¢) =true} D X

(M, s) =i X = {p € L:0(s)(K;p) =true} = X

3.1 Properties

The following schemata, where X, Y, Z range over finite sets of formulae and ¢
over single formulae, show some properties of SSAs, in the language L.

D0 El
As X ALY — Af(XUY) E2
(ViX A 7iY) — vi(X NY) E3
(DX ATY) when X ¢ Y Ed
(Vi(Y U{o}) A =Ki) — viY E5
A X = AY when Y C X KS
Ui X — 7Y when X CY KG
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It is straightforward to prove the following.

Lemma 6 E1-E5, KG, KS are valid. a

4 Axiomatizations of SSAs

In this section we discuss axiomatizations of standard syntactic assignments in
the language L. The following lemma shows that the logic is not compact, and
thus it does not have a strongly complete finitary axiomatization (Fact 1).

Lemma 7 The logic of standard syntactic assignments in the language L, is
not compact. d

PRrooF Let p € @ and let I} be the following L, theory:
I ={Kip,~vi{p}} U{-Kip: ¢ # p}

Let I be a finite subset of I'}. Clearly, there exists a ¢’ such that —=K;¢' & I".
Let M = ({s},0) be such that o(s)(K;¢) = true iff  =p or ¢ = ¢'. It is easy
to see that (M, s) = I'". If there was some (M', s") such that (M’,s") = I, then
(M',s") |E =i {p} i.e. there must exist a ¢ # p such that o(s)(K;¢p) = true —
which contradicts the fact that (M’,s") E —K;¢ for all ¢ # p. Thus, every finite
subset of I is satisfiable, but Iy is not. n

We present a strongly complete infinitary axiomatization in 4.1. Then, in
4.2, a finitary axiomatization for a slightly weaker language than L, is proven
strongly complete for SSAs.

4.1 An Infinitary System

We define a proof system EC® for the language L, by using properties presented
in Section 3 as axioms, in addition to propositional logic. In addition, EC*
contains an infinitary derivation clause R*. After presenting FC*, the rest of
the section is concerned with proving its strong completeness with respect to
the class of all SSAs. This is done by the commonly used strategy of proving
satisfiability of maximal consistent theories. Thus we need an infinitary variant
of the Lindenbaum lemma. However, the usual proof of the Lindenbaum lemma
for finitary systems is not necessarily applicable to infinitary systems. In order
to prove the Lindenbaum lemma for EC*, we use the same strategy as [5] who
prove strong completeness of an infinitary axiomatization of PDL (with canonical
models). In particular, we use the same way of defining the derivability relation
by using a weakening rule W, and we prove the deduction theorem in the same
way by including a cut rule Cut.
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Definition 8 (EC*“) EC" is a logical system for the language £, having the
following axiom schemata

All substitution instances of tautologies

of propositional calculus Prop
(ViX AiY) = vi(XNY) E3
(LA X ALY when X ¢V E4
(Vi(Y U{y}) A =Kiy) — VY E5
vi X — VY when X CY KG

The derivation relation Fgcw — written =, for simplicity — between sets of Lo
formulae and single L formulae is the smallest relation closed under the fol-
lowing conditions:

Fo @ when ¢ is an axiom Ax
{60 =Y} ¥ MP
U{O‘jﬁﬁ i’)/:’ngj}l_w/\aj_’ViX R*
jeJ jeJ
when X = ﬂ X; and X and J are finite
JjeJ
'k, ¢

a1 A%%
TUAF, ¢
ko A TUAR, ¢

T, o Cut

In the above schemata, X, Y, Z, X; range over sets of £ formulae, v over £
formulae, I', A over sets of Ly, formulae, ¢, ¥, o; over Ly formulae, and ¢ over
agents. J is some finite set of indices. m|

It is easy to see that E1, E2 and KS are derivable in EC*.

The use of the weakening rule instead of more general schemas makes induc-
tive proofs easier, but particular derivations can sometimes be more cumbersome.
For example:

Lemma 9
u{¢}tty, o R1
Fotp — ¢
—_—— R2
Proor

R1: {$,¢ — ¢} Fu ¢ by MP; =, ¢ — ¢ by Ax; {¢} Fo ¢ — ¢ by W; {9} -, &
by Cut and I" U {¢} ko, ¢ by W.
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R2: Let -, p — ¢. By W, {¢} F, ¥ — ¢; by MP {¢,9 — ¢} k., ¢ and thus
{¥} Fu ¢ by Cut. By W, I'U{¢} b, ¢. [

In order to prove the Lindenbaum lemma, we need the deduction theorem. The
latter is shown by first proving the following rule.

Lemma 10 The following rule of conditionalization is admissible in EC*.

I''uAtr, ¢
ru{y —-d6:0eAtb, v — ¢

Cond
O

PrOOF The proof is by infinitary induction over the derivation I" U A F,, ¢
(derivations are well-founded). The base cases are Ax, MP and R*, and the
inductive steps are W and Cut.

Ax: I' = A = (). We must show that -, ¥ — ¢ when F, ¢. By W we get
¢ — (Y — @) by &, then ¢, ¢ — (Y — @) b, ¥ — ¢ is an instance of MP,
and by Cut we get ¢ — (¢ — ¢) b, v — ¢. By Prop, b, ¢ — (¢p — ¢), so
by Cut once more we get -, 1 — ¢.

MP: TUA ={¢,¢' — ¢}ty ¢ That TU{p — 6 :0 € A} b, ¥ — ¢ can
be shown for each of the four possible combinations of I" and A in a similar
way to the Ax case.

R*: ¢ = Ajeja; — viX and U A = Ujes{a; —» - K;¢' : ¢ € L\ X,;} where
J is finite and X = N;c;X; is finite, i.e. there exist for each j € J sets Y;
and Z; such that £\ X; =Y; W Z; and

r=Ulo —-Kid': ¢/ €V}
jeJ

A=|J{oy = ~Ki¢ 1 ¢ € Z;}
jeJ

Let

r'=J{@ ) = -Ki¢' : ¢/ € Y}
jeJ
A = J{wray) = K : ¢ € Z;}

jeJ

I'uA =Uje{(¥ Ney) = ~Ki¢' : ¢/ € L\ X}, and thus IV U A’ =, +/,
where v = Njes(¥ A ay) — X, by R¥. By W, I UA' U +, +. By
Prop, F, (o — —K;¢') = (¢ A o) — —K;¢') for each a; — K¢ € T,
and by R2 (once for each formula in I') AU+, V. By Cut, A'UT" -, v/,
and it only remains to convert the conjunctions in A’ and 4’ to implications:
A'UI'u{v'} ko, ¢ — ¢ by Prop and R2, and by Cut and W it follows that
AUTU{yp — §: 6 € A}, v — ¢. By Prop and R2 (once of each formula in
A, Tu{p —-56:€ At +, A and by Cut I'U{yp = §:6 € A} b, ¥ — o,

which is the desired conclusion.
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W: I"UA +, ¢ for some IV C I' and A’ C A. By the induction hypothesis
we can use Cond to obtain I"U{y — §:§ € A’} b, ¥ — ¢, and thus
ru{yp —96:e€ A}k, — ¢ by W.

Cut: I'UAt+, A" and TUAUA' +,, ¢, for some A’. By the induction hypothesis
on the first derivation (once for each ¢’ € A"), 'U{p - §:d € A} b, ¢ — &
for each ¢’ € A’. By the induction hypothesis on the second derivation,
ruf{p -6:6€c AUA Y, — ¢. By Cut, 'U{yp —0:0 € A}, ¢ —

¢ .
Theorem 11 (Deduction Theorem) The rule
r
U{g} o, DT
'ty ¢o—4
is admissible in EC". O

Proor If I' U{¢} Fu ¢, then 'U{¢d — ¢} ko, ¢ — ¢ by Cond. I' F,, ¢ — ¢
by Ax and W, and thus I' k-, ¢ — 1 by Cut. [

Now we are ready to show that consistent theories can be extended to max-
imal consistent theories. The proof relies on DT.

Lemma 12 (Lindenbaum lemma for EC®) If I" is EC“-consistent, then
there exists an Lo -maximal and EC*-consistent I'"" such that I" C I". ]

Proor Recall R*:

U{aj — Ky &€ Xt /\ aj — ViX.

JjeJ JjeJ
Formulae which can appear on the right of F,, in its instances will be said to
have R*-form. A special case of this schema is when /\j a; is a tautology (i.e.,
each «; is), from which

U{Krd v & X;} Fo Vi X

jeJ
can be obtained. Now, I" D I' is constructed as follows. L, is countable, so
let ¢1, ¢2, ... be an enumeration of L, respecting the subformula relation (i.e.,
when ¢; is a subformula of ¢; then i < j).

Iy=T

I U{¢it1} if I by dia

L u{=¢i11} if I; 1/, ¢i11 and ¢;41 does not have the R*-form

Fl‘ U {_'(bilea de)} if Fz |7[w (;37;+1 and ¢i+1 has the R*—fOI‘I’Il, where 77[) is
arbitrary such that ¥ € X and I; t, =Ky

Iy =

w
r=Jr
=0
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The existence of ¥ in the last clause in the definition of I'; 1, is verified as follows:
since I; I/, ¢;11, there must be, to prevent an application of R*, at least one
a; and ¢ € X such that I; I/, a; — =K. By construction (and the ordering
of formulae), each «; or its negation is included in I;. If I; -, —a; then also
I b, aj — K, and this would be the case also if I -, ~ K. So I F,, «;
and [ ., ~ K.

It is easy to see that I” is maximal.

We show that each I; is consistent, by induction over i. For the base case, I
is consistent by assumption. For the inductive case, assume that I'; is consistent.
I'; 11 is constructed by one of the three cases in the definition:

1. I;14 is obviously consistent.

2. If Fi+1 = Fz U {_‘QbiJrl} Fw J_, then Fz Fw ¢7i+1 by DT and :PI‘Op7 contra-
dicting the assumption in this case.

3. Consider first the special case (when all o are tautologies). Assume that
Fi+1 = Fz @] {ﬁ VEk X,Kk’lﬁ} }_w 1. Then Fz }_w ka — ka by DT and
Prop and by E4, since ¥ € X, I F, Kxtp — =</ X, and thus I; -, ~ K¢
contradicting the assumption in this case.

In the general case, assume that ;1 = FiU{—'(/\j a; — ViX), Ky} o L

i Then I3 F, Ky¢p — (—\(/\jaj - viX) — 1), le, I b, Kptp —
(N\jos — VX)), Le, I bo \j oy — (Kpp — Vi X).

ii By assumption in the construction, I3 tA, —(A;a;) (for otherwise it
would prove A;a; — v, X), but since /\; a; (as well as each a;) is a
subformula of ¢;41, it or its negation is already included in ;. But this
means that I; /\j a;. Combined with (i), this gives I ., Kiyp —
VX, ie, I Fy, 7Kg Ve X.

iii On the other hand, by E4, since ¢ ¢ X : I; b, =(Krt A Vi X), ie.,
I by ~Kpp V-7, X. Combined with (ii) this means that I F, ~ K,
but this contradicts the assumption in the construction of I ;.

Thus each I} is consistent.
To show that I" is consistent, we first show that

IMbop=(I"CI'=¢el) (1)

holds for all derivations I'” -, ¢, by induction over the derivation. The base
cases are Ax, MP and R*, and the inductive steps are W and Cut. Let i be
the index of the formula ¢, i.e. ¢ = ¢;.

Ax: If -, ¢, then ¢ € I'; by the first case in the definition of I7.

MP: I = {¢',¢' — ¢}. If I'" C I, there exists k,l such that ¢’ € I, and
o —>pell. Mg &I ~¢pe I by maximality, i.e. there exists a m such that
¢ € Iy But then =, ¢', ¢ — ¢ € Iyax(r,m), contradicting consistency
of Fmax(k:,l,m)'

R*: I = Ujes{ay — Ky : ¢ ¢ X;} and ¢ = ;o5 — X, where
X = ﬂj X,;,and I C I". If ¢ ¢ I'"” then, by maximality, -¢ € I"’, and thus
—¢ € I;. Then, by construction of I3, I;—1 t/, ¢ (otherwise ¢ € I'") and
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Ky € I for some ¢ ¢ X. By the same argument as in point 3.(ii) above,
I Fo, A\, o, and hence also I |k, /\j a;. But then, for an appropriate m
(namely, for which ¢,,, = o — = Ky): I'y—1 by o and Iy—q Fo Kith,
ie., 2(a; = ~Kyy) € Iy, and so a; — Ky ¢ I, which contradicts the
assumption that I C I".

W: I"=1"UA and I'" b, ¢. U I C I, I C I' and by the induction
hypothesis ¢ € I'".

Cut: I+, Aand I'" UA &, ¢. Let I C I'". By the induction hypothesis
on the first derivation (once for each of the formulae in A), A C I'"”. Then
I'"UA C I, and by the induction hypothesis on the second derivation
pel.

Thus (1) holds for all I'" F,, ¢; particularly for IV -, ¢. Consistency of I

follows: if I +,, L, then L € I, i.e. L € I} for some [, contradicting the fact

that each I} is consistent. [

The following Lemma is needed in the proof of the thereafter following
Lemma stating satisfiability of maximal consistent theories.

Lemma 13 Let I” C Ly be an Lg-maximal and EC*-consistent theory. If
there exists an X’ such that I'" +, v7;X’, then there exists an X such that
I, & X. |
PROOF Let I be maximal consistent, and let IV I, \7; X’. Let
X = N Y

YCX’ and Iy v Y
Since every Y is included in the finite set X', X is finite, and IV F,, v7; X can
be obtained by a finite number of applications of E3. Let

Z= |J v

Iy Y

If I+, A\;Y,then Y C X, since otherwise I"” would be inconsistent by E4. Thus
Z is finite. By a finite number of applications of E2, I'" b, A;Z. If Z ¢ X, then
I'" would be inconsistent by E4, so Z C X. We now show that X C Z. Assume
the opposite: ¢ € X but ¢ ¢ Z for some ¢. Let X~ = X \ {¢}. I Vo, Ko,
since otherwise ¢ € Z by definition of Z. By maximality, I’ -, —K;¢. By E5,

I'" +, sv; X~ - but by construction of X it follows that X C X~ which is a
contradiction. Thus, X = Z, and I +,, {; X. n

Lemma 14 Every maximal FC“-consistent L, theory is satisfiable. O

PROOF Let I' be maximal and consistent. We construct the following SSA, which
is intended to satisfy I:

MT = ({s},o")
al'(s)(p) =true < I'-, p when p € ©
ol (s)(K;¢) = true & ¢ € X1’
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where:

xI' Z where I' b, ;7 if there is an X’ such that I' F, ;X'
P\ {y: TR K} otherwise

In the definition of XiF , the existence of a Z such that that I -, {;Z in the
case that there exists an X’ such that I' i, v7; X’ is guaranteed by Lemma 13.
We show, by structural induction over ¢, that

(MT,s)E¢p=TFr, ¢ (2)

This is a stronger statement than the lemma; the lemma is given by the direction
to the left. We use three base cases: when ¢ is in @, ¢ = K;¥ and ¢ = v7;X. The
first base case and the two inductive steps negation and conjunction are trivial,
so we show only the two interesting base cases. For each base case we consider
the situations when X/ is given by a) the first and b) the second case in its
definition.

— ¢ =K (M",s) = Ky iff € X[
=) Let¢y € X! . Incasea), X! = Z where I' I, {;Z and by KS, I' -, K;1).
In case b), I' i, K% by construction of X/ .
<) Let I' b, K. In case a), I' by, 7;Z and thus ¢ € Z = X! by E4 and
consistency of I'. In case b), 9 € X} by construction.
—¢o=viX: (MF,s) v X iff X C X.
=) Let X/' C X.Incasea), I' i, {;Z where Z = X} C X,soI' i, ;X by
KG. In case b), X! must be finite, since X is finite. For any ¢ ¢ X1,
I' t/, K3 by construction of X', and I' +, —K;1) by maximality.
Thus, by R* (with J = {1}, ay = T and X; = X/, I' -, v X7},
contradicting the assumption in case b). Thus, case b) is impossible.
<) Let I' b, 7:X. In case a), I' b, A;Z and by E4 and consistency of I’
X!I'= 7 C X. Case b) is impossible by definition. "

Theorem 15 ECY is a sound and strongly complete axiomatization of standard
syntactic assignments, in the language L. a

PROOF Soundness follows from Lemma 6, and the easily seen facts that MP and
R* are logical consequences and that W and Cut preserve logical consequence,
by induction over the definition of the derivation relation. Strong completeness
follows from Lemmas 12 and 14. [

4.2 A System for a Weaker Language

In the previous section we proved strong completeness of EC* by using R*.
It turns out that strong completeness can be proved without R*, if we restrict
the logical language slightly. The restriction is that for some arbitrary primitive
proposition p € @, K;p and v/; X are not well-formed formulae for any i and
any X with p € X. The semantics is not changed; we are still interpreting the
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language in SSAs over £(©,n) as described in Sections 2 and 3. Thus, in the
restricted logic agents can know something which is not expressible in the logical
language.

£pv C Ly is the restricted language for a given primitive proposition p.

Definition 16 (L',ﬁv) Given a set of primitive propositions ©, a proposition
p € @ and a number of agents n, Epv (©,n) (or just Epv) is the least set such
that:

-oeccy
If ¢,9 € LY, then —¢, (p A1) € LY
If € (L\{p}) and i € ¥ then K;¢ € L
— If X € f(£\ p) and i € X then ;X € L, O

The finitary logical system EC? is defined by the same axiom schemas as
EC®. The two systems do not, however, have the same axioms since they are
defined for different languages — the extensions of the schemas are different. The
derivation relation for EC? is defined by the axioms and the derivation rule
modus ponens. Particularly, the infinitary derivation clause R* from EC® is
not included.

Definition 17 (ECP?) EC? is the logical system for the language Eﬁv consisting
of the following axiom schemata:

All substitution instances of tautologies

of propositional calculus Prop
(ViX AiY)— vi(XNY) E3
(LN X ALY when X ¢V E4
(Vi(Y U{v}) A=Kiy) — 7Y E5
ViX — VY when X CY KG

The derivation relation s — written -5 for simplicity — between sets of Eﬁv for-

mulae and single L’A’v formulae is the smallest relation closed under the following
conditions:

I't5 ¢ when ¢ € I Prem
I'5 ¢ when ¢ is an axiom Ax
Py ¢ rp o= MP

'ty .

It is easy to see that E1, E2, KS and DT are derivable in EC*.

The restriction £2 C L, is sufficient to prove strong completeness without
R* in a manner very similar to the proof in Section 4.1. The first step, existence
of maximal consistent extensions, can now be proved by the standard proof since
the system is finitary.
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Lemma 18 (Lindenbaum lemma for ECP) If I'is EC?-consistent, then there
exists an ﬁ%—maximal and ECP-consistent I such that I" C I". a

Second, we establish the result corresponding to Lemma 13 for ﬁ@ and ECP.

Lemma 19 Let I C Eﬁv be a Eﬁv—maximal and ECP-consistent theory. If there
exists a X’ such that I'" 5 7, X', then there exists a X such that I 5 $;X.0

PRrROOF The proof is essentially the same as for Lemma 13, for the language cP
instead of L, (note that in that proof we did not rely on R*, and that p ¢ X
since X C X'). "

Third, we show satisfiability.

Lemma 20 Every maximal EC?-consistent ﬁﬁv theory is satisfiable. O

PRrROOF Let I' be maximal and consistent. The proof is very similar to that of
the corresponding result for FC* (Lemma 14). We construct the following SSA,
which is intended to satisfy I

M" = ({s},0")
ol'(s)(p) =true & '3 p when p € ©
ol (s)(K;¢) = true & ¢ € XI'

where:
Z where I' 5 &3 Z  if there is an X’ such that I' k5 v, X’
X ={{y: I'rp Kin} U{p}if Vx/ I' V5 i X' and UFkﬁA,,-,Y Y is finite
{v: 'ty Kiv} it Vx/I't/p 7: X’ and UF,_{)AiY Y is infinite

The existence of Z is guaranteed by Lemma 19, and, again, we show, by struc-
tural induction over ¢, that

(MF,s)Fo=Tt;¢ 3)

for all ¢ € L',ﬁv. As in the proof of Lemma 14 we only show the epistemic base
cases. For each base case we consider the situations when

a) there is an X’ such that I' 5 7, X’ or
b) I'l/s ;X' for every X'

corresponding to the first and to the second and third cases in the definition of
XT' respectively.
— ¢ =Kip: (M) s) = K iff ¢ € XF.
=) Let ¢ € X! Incasea), X} = Z where I" 5 $;Z and by KS, I' b5 K;1).
In case b), ¥ # p (since K9 € L@) and thus I" 5 K;9 by construction
of X[
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<) Let I' by Ki3. In case a), I' b 57;Z and thus ¢ € Z = X/ by E4 and

consistency of I'. In case b), ¥ € X" by construction.
—o=viX: (MF,s) v X iff X C X.

=) Let X/ C X. In case a), I' b5 $;Z where Z = XI' C X, s0o I' by i X
by KG. In case b), if p € X! then p € X which is impossible since y7; X
is a formula. But if p ¢ X/ then X! is infinite (by construction) which
is also impossible since X is finite — thus case b) is impossible.

<) Let I' 5 v X. In case a), I' 3 A, Z and by E4 and consistency of I’
X!I'=Z C X. Case b) is impossible by definition. n

Theorem 21 EC? is a sound and strongly complete axiomatization of standard
syntactic assignments, in the language va. a

PROOF Soundness follows from the soundness of EC* and the fact that I" 5 ¢
implies I'" -, ¢, the latter which can be seen by induction on the length of a
proof in EC? (every L',pv formula is also a Ly formula): the base case Prem
follows by R1 (Lemma 9), the base case Ax follows by Ax and W, and the
inductive case MP follows by MP, W and Cut. Strong completeness follows
from Lemmas 20 and 18. m

5 Discussion

We introduced a “knows at most” operator in order to increase the expressive-
ness of the epistemic language with respect to standard syntactic assignments,
and investigated strong axiomatization of the resulting logic. The new operator
destroyed semantic compactness and thus the possibility of a strongly complete
finitary axiomatization, but we presented a strongly complete infinitary axiom-
atization. An interesting result is that we have a strongly complete finitary ax-
iomatization if we make the assumption that the agents can know something
which is not expressible in the logical language. The results are a contribution
to the logical foundation of multi-agent systems.

Related work include classical syntactic treatment of knowledge [6-8, 1], mod-
elled in a possible worlds framework by [1] as described in Section 2. The v7;
operator is new in the context of syntactic models. It is, however, similar to
Levesque’s only knowing operator O [9]. Oa means that the agent does not
know more than «, but knowledge in this context means knowledge closed un-
der logical consequence and “only knowing «” is thus different from “knowing
at most” a general set of formulae. The relation between these concepts is an
interesting possibility for future work.

In [4] we investigate the special case of agents who can know only finitely
many syntactic formulae at the same time. Completeness results for such finitely
restricted agents build upon the results presented in this paper. Another possi-
bility for future work is to study other special classes of SSAs.

In this paper we have only studied the static aspect of syntactic knowledge.
In [10], we discuss how syntactic knowledge can evolve as a result of reasoning
and communication, i.e. a dynamic aspect of knowledge.
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Abstract. We present a weak multi-agent system of Only knowing and
an analysis of the logical spaces that can be defined in it. The logic
complements the approach to generalizing Levesque‘s All I Know system
made by Halpern and Lakemeyer. A novel feature of our approach is
that the logic is defined entirely at the object level with no reference to
meta-concepts in the definition of the axiom system. We show that the
logic of Halpern and Lakemeyer can be encoded in our system in the
form of a particular logical space.

1 Introduction

Multi-agent belief logics can be viewed as systems designed for the represen-
tation of representations (or languages) that agents use for reasoning about
other agents’ cognitive states. A multi-agent only knowing system has language
constructs for representing upper and lower bounds of beliefs; it thereby has
constructs for expressing the exact content of an agent’s belief state. A variety
of multi-modal only knowing languages have been analyzed in [5]. However, to
represent defeasible patterns of reasoning in a multi-agent context, only knowing
systems in which the underlying modal belief logic is K45 are particularly inter-
esting. A natural way to design such systems is to generalize the only knowing
system of Levesque [7] to the multi-modal case.

This is, however, a non-trivial task; the tricky part of this is hidden in an
axiom (which we shall refer to as the ¢-axiom) to the effect that ¢ (¢ is logically
possible) is an axiom for each satisfiable, objective ¢ (“objective” because it does
not contain any modal operators). In a series of papers [2—4,6] Halpern and
Lakemeyer have attempted to formulate an appropriate generalization of this
axiom in a multi-modal language; in the solution they end up with they enrich
the object language with constructs for coding the satisfiability relation into the
system. They also provide their analysis with a canonical model semantics. This
semantics has, however, limited power, since the only model they allow is defined
on the uncountable set of all maximally consistent sets.

In [12] the second author introduced another generalization of the only know-
ing system of Levesque [7] to the multi-modal case which does not use meta-
language operators. The {-axiom is instead generalized to the statement that



Qatp s an axiom for each consistent a-objective ¢ (a-objective because any occur-
rence of an a-modal operator is within the scope of a b-modal operator, a # b).
He proves consistency of the system Lj; by proving that a complete subset of
the language has a cut-free sequent calculus. He also proves that L; is indeed
equivalent to the system that Halpern and Lakemeyer claim is the correct multi-
modal generalization of Levesque’s system for the common part of the languages
(i.e. formulae without the meta-concept operators).

We propose yet another solution based on a constructive explication of the
concept of a logical space. Intuitively, the function of a logical space is to explicate
every logical possibility of the logic. This is what has been done in the single-
agent only knowing system /E presented in the paper by Lian et al. [8] and further
analyzed in [11]. A logical space in /E is a formula A such that for each purely
Boolean ¢, either A - $p or A - =0 p. Compared to the only knowing system of
Levesque, the system A has an increased expressive power due to the possibility
of varying the logical space, where the {-axiom of Levesque corresponds to only
one of many possibilities.

This paper provides a generalization of the system & to the multi-agent case,
and hence also provides a solution to the problem with the generalized ¢-axiom.
In the single-agent case, the set of possibilities is derived from a set of formulae
from the language of propositional logic. The formulae of this particular set are
referred to as atoms. Where « is an atom describing a logical possibility, the
logical space A is defined such that Q« is entailed by A. In the multi-agent case,
we aim at defining a logical space A\, for each agent a, such that ¢, is entailed
by A, for each ¢ representing a logical possibility to agent a.

By providing logical spaces as a solution to the problem with the {-axiom,
we need not encode meta-concepts into the language, nor refer to such concepts
in the definition of the axiom system.

In order to bring the task of defining a multi-agent logical space to a man-
ageable level, we will address the problem inductively at different levels of com-
plexity, each level corresponding to a sub-language within which the set of pos-
sibilities is outlined. The base case is equivalent to the single agent case: Let
Ly denote the language of propositional logic. The set of possibilities is derived
by closing a subset of £y under the {,-operator for each agent a. The resulting
set of formulae is then a subset of the language of the next level, denoted L.
Inductively, the set of possibilities for agent a at level k + 1 is derived from a
subset of the a-objective formulae of L.

The main task of this paper is to construct the sets of formulae that, for
each agent and each language level, express each and every logical possibility.
We propose this as a replacement of the {-axiom of Levesque. In Sect, 4, we will
show how the logic of A; applies to examples from the paper of Halpern and
Lakemeyer [4]. In Sect. 6, we prove the equivalence between the systems /&; and
Ly, and hence the equivalence between the system of Halpern and Lakemeyer
[4], where a particular logical space is added to the axioms of Aj.

In [13] a modal reduction property for Ly is established, which states that
any “only knowing” expression is provably equivalent to a disjunction of “only
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knowing” expressions of a particular simple form. Each of these latter expressions
provides us with an explicit syntactical representation of a particular model of
the original formula. The latter expressions explicitly characterize the possible
cognitive states of the agent, given the initial “only knowing” expression. In Sect.
5 we shall see that the same property holds also in &j.

2 The Logic Aj

2.1 Syntax

The object language £ contains a countable set of propositional letters P, the
propositional constant L, the Boolean connectives — and A and the modal op-
erators B, and C, for each a in a countable non-empty set of indices I. The
index set I represents the set of agents, B, is a belief operator, and C, is a
complementary co-belief operator for agent a € I. The propositional constant
T is defined as -1, while the Boolean connectives V, D and = are the usual
abbreviations. Other modal operators defined as abbreviations are the follow-
ing: by (p is compatible with belief) is “B,—¢, c.p (¢ is compatible with
co-belief) is =C,—p, a0 (¢ is necessary) is B, A Cap and Qg (¢ is possible)
is ba V cqp. Observe that necessity and possibility are relative to the extension
of a given agent’s belief and co-belief; the notion of necessity hence captures
personal necessity.

The more accurate interpretation of the B,-operator is that a formula B,
states that agent a believes at least ¢ to be true, but perhaps more. The B,-
operator thus puts a lower bound on the extension of belief. The complementary
operator C, puts an upper bound on the belief in the sense that a formula C,p
states that agent a believes at most ¢ to be false, but perhaps less. The formula
B.p A C,—p states that ¢ is ezactly what is believed. The introduction of the
C.-operator thus allows an “All a knows”-proposition O,¢ to be defined as
B,o A Cyo.

A formula not mentioning any modal operators is called purely Boolean. ¢ is
an a-modal atom if it is of the form B,y or C,p, a € I. An a-modal literal is an
a-modal atom or the negation of an a-modal atom. ¢ is a completely a-modalized
formula if it is a Boolean combination of a-modal atoms. ¢ is free of modality
a if it is a Boolean combination of propositional letters and modal atoms not
of modality a. ¢ is a first-order formula if, for each a € I and each subformula
B.v¢ and C,¢ in ¢, ¢ is free of modality a. If I is a set of formulae, I"* = {p €
I' | ¢ free of modality a} and I'* = {p € I' | ¢ completely a-modalized}. If I’
is a set of formulae, Sf(I") denotes the set of subformulae of the formulae in I'.
When I is a singleton set containing ¢, Sf(¢) denotes Sf({¢}).

The modal depth d(¢) of a formula ¢ expresses the nesting of alternat-
ing modalities in . Formally, the modal depth of a purely Boolean ¢ is 0.
Otherwise, if ¢ is B,y or Cuv, let ¥ be the set of modal atoms which oc-
cur as subformulae in . Then d(p) is the maximal number in {d(x) + 1 |
X € ¥ and y is not a-modalized} U {d(x) | x € ¥ and x is a-modalized}. Other-
wise, the modal depth of ¢ is the maximal d(¢)) for a subformula ¢ of ¢. The
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modal depth of an a-modal formula ¢ is hence increased by prefixing ¢ with any
other modal operator than an a-modal operator.

If I is a set of formulae, I', = {¢ € I' | d(¢) < k}. We will in this paper be
interested in sub-languages relative to a given modal depth and a given agent.
Since £ denotes the language of A; (which is just a set of formulae) these
sublanguages are denoted Ly, E;“ and L} following the set indexing notation
introduced above.

A tautology is a substitution instance of a formula valid in propositional logic,
e.g. Oy D Ogep. The deducibility relation '+’ of the logic A; is defined as the
least relation that contains all tautologies, is closed under all instances of the
rules

e
F O

Fp FepDy
F

and contains all instances of the following schemata for each a € I:

(RN) (MP)

Kg: Bu.(p D v) D (Bap D Bat) Bo: —Buy D 0,-Bay
Ke: Cu(p D) D (Cap D Cutp) Cph: —C,p D 0,~C,p
Bo: By D 0OBayp T: Oap Do

Co: Cup D 0O,Cuyp

We write b ¢ if ¢ is theorem of By, and p1,...,0, F Y for - (p1 A+ App) D
1. I' b ¢ means that there is a finite number of formulae ~1,...,7, in I" such
that v1,...,% F @. If I' = L, I' is inconsistent otherwise I is consistent. We
will without reference use the well-known principles of modal logic, especially
substitution of provable equivalents, the derived rule

9017---341071'_1/)
B.pi,....Bapn F By

and the corresponding rule for C,.
Lemma 1. O, is an S5 modality.

Lemma 2. Any formula is provably equivalent to a first-order formula with the
same modal depth.

The former of these two results is Lemma 1 of [13]; the latter is Lemma 2 of
[12]. For proofs and further details about the results in the rest of this section,
the reader may consult [13].
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2.2 Semantics

A frame is a structure (W,{R,,S, | a € I}), where W is a non-empty set of
points and R, and S, are binary relations satisfying the following two conditions:

(f 1)_Let X be either R, or S, and Y be either R, or S, or their complements

R, or S,. Then the composition X oY C Y.
(f2) Ey, = Ry U S, is reflexive.

Note that in standard terminology two of the eight subconditions of (f1)
state that R, and S, are transitive,_e.g. &1 o R, C R,, while two of them state
that they are Euclidean, e.g. R, 0o R, C R,.

Lemma 3. E, is an equivalence relation.

An a-cluster is an equivalence class of W modulo F,. Let C be an a-cluster.
We define the belief part C* and the co-belief part C~ of C by: CT = {zx € C'|
xRz} and C~ = {z € C | xS,x}. C is bisected it CT NC~ = .

Lemma 4. C =CtTUC~.

A model M = (W,{R,, S, | @ € I}, V) is a frame with a valuation function
V', which maps each propositional letter onto a subset of W. The satisfiability
relation F,, x € W, is defined by

ME,p < xe€V(p), papropositional letter,
ME; mp = MFE; o,

ME; Bap < Vy (zRy — M Ey @),

ME; Cop — Yy (xSqy — M Ey o),

and in the usual way for the other Boolean connectives. We write M [Ex ¢ iff
(Vz € X)(M [=5 ¢). A formula is valid in a frame if it is true at all points in
all models on the frame. If ¢ is valid in all frames, we write F ¢, and say that
¢ is valid. I' = ¢ means that for all models, ¢ is true at all points which satisfy
all formulae in I'. Note that if C' is an a-cluster, all points in C' agree on every
completely a-modalized formula in every model on the frame.

Theorem 1. &; is sound, complete and decidable.

Proof. This can be proved by the use of standard techniques from modal logic,
see [13]. O

3 Finitely Bound Sublanguages

The syntax and semantics of the previous section generalize the syntax and
semantics of the system A to the multi-agent case. What remains to be done is
to generalize the notion of a logical space to the multi-agent case. The properties
of the single-agent logical space will serve as guiding principles for our multi-
agent generalization.
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In the single-agent case, under the assumption that there are finitely many
propositional letters in the language, say pi,...,pm, an atom is defined as a
conjunction £p; A -+ A £p.,, where +p means either p or —p. An atom can be
interpreted as characterizing the material content of a state of affairs. There are
2™ atoms. Where «ag,...,q, characterize the conceivable states of affairs, the
logical space is defined as the formula

Qar A+ ANQap AO(a1 V-V ay).

In the maximal logical space, all atoms are possible, i.e. n = 2™.

The notion of a logical space is a notion of personal necessity. To see this,
observe that we may define a logical space such that concepts that intuitively are
logically independent are related in the logic at the level of necessity. We may
e.g. define a logical space A such that A - O(penguin(Tweety) D bird(Tweety)).

In order to define a multi-agent logical space, we need to generalize the notion
of an atom. To do this, we first define a finite multi-modal language. For such
a language to be finite, the set of propositional letters and the set of different
modalities, i.e. the index set I, obviously need to be finite. Furthermore, as we
may construct new formulae by prefixing a formula free of modality a with any
a-modal operator, the finite language must be bound by a limit on modal depth.
Under the assumption that the set of propositional letters and the set of agents
are finite, we will for each modal depth k operate with the sublanguage L.

The notion of an atom is a twin to the notion of a complete theory. Given any
language L£*, a formula ¢ € L* is a complete theory for £* iff for all formulae ¥ €
L*, either ¢ - 1 or ¢ - —1p. The modal language of /&, denoted £; for a singleton
set I, can be seen as representations of formulae from Ly, i.e. the language of
propositional logic. As an atom can be interpreted as a propositional valuation, it
is easy to see that each atom is a complete theory for £y. Generalizing this to the
multi-agent case is to say that a multi-modal language is a language representing
representations in a modal language, the first capturing the cognitive state of a
given agent a, the latter representing the material content of states of affairs as
well as the cognitive state of every agent different from a. The latter language
is then denoted by £, for some given integer k, the former the closure of £,*
under the a-modal operators. A complete theory for £,* is thus a complete
characterization of the material content of a state of affairs in addition to a
complete characterization of the cognitive state of every agent different from a
given agent a.

The notion of a complete theory may then serve as a test for deciding whether
a suggested multi-modal logical space is a correct generalization of the single-
agent logical space. In other terms, if Qa1 A+ A Caon Aa(p1 V-V py) is

a multi-modal logical space for a given agent a, where {¢1,...,pn} C E}C‘L for
a given integer k, then each ¢ € {¢1,...,¢,} should be a complete theory for
£y,

We will use the following notation for the distribution of a modality over a
set of formulae: B,I" = {B,7y | v € I'}, and the same for any other modality.
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Definition 1. Let ® C £L\*. The functions Bel,, Cobel, and Lspace,, all of them
from a set of formulae free of modality a to a completely a-modalized formula,
are defined as follows:

Bel,(®) = /\ ba® A B.(\/ @),
Cobely (@) = /\ ca® A Cal(\/ @),
Lspace, (@) = /\ Ga® N Da(\/ D).

Lspace, () is the logical space for agent a spanned by . If #T UP~ = &, then
Bel,(®1) A Cobel,(@7) is a doxastic a-alternative spanned by @. Notice that a
dozastic a-alternative spanned by @ entails Lspace,(P). The set of all dozastic
a-alternatives spanned by every nonempty subset of ® is denoted Dox,(P).

Two properties will play a central role in our analysis. A set of formulae &
satisfies the strong independence property if every two elements of @ are consis-
tent iff they are equivalent. @ is L*-saturated if @ C L* and every formula ¢ € L*
is equivalent to a disjunction of formulae in @ (L* any language addressed in
this paper).

Lemma 5. If & C L\ satisfies strong independence, then so does Dox,(P).

Proof. Let §; and d2 be two distinct elements of Dox,(2). Then 01 and d2 must
disagree on the belief set or the co-belief set. We treat the former. Let §;
Bel,(I1) and &2 F Bely(I%). There is then a formula ¢ such that either ¢ € I
and ¢ ¢ Iy or vice verca. In the first case, ¢ Ay L for each v € I'» by strong
independence. Hence ¢ A\/ I'; - L. By modal logic, B,(\/ I2) = B,—y. Since
da F Ba(\/ Iz) and 61 - bap, we get 01 Ada F L. The latter case is symmetrical.

O

Lemma 6. Let L* be any Boolean closed set of formulae and @ be L*-saturated.
Then - \/ &.

Proof. Assume that —\/ & is consistent. Since @ is L*-saturated and L£* is
Boolean closed, there must then be a non-empty set I' C @ such that - \/ I =
—\/ @. But this is clearly impossible. O

Lemma 7. Let & be £)"-saturated. Then Doxo(®) is L, -saturated.

Proof. Let ¢ € L}, . We may without loss of generality assume that ¢ is first-
order. Since @ is Eka-saturated, the formulae inside the scope of the a-modalities
are equivalent to disjunctions of formulae from &@. By standard propositional
reasoning and normal modal logic and, ¢ is equivalent to a formula on DNF,
where each disjunct is of the form ¢y = Abe 1 ABo(V I2) AN cal3 ACo(V Iy),
Iy, ...,Iy subsets of @. Let

A = {5 € Dox(®) | § = Belo(¢+) A Cobely (&), Iy C &+ C I, I3 C &~ C Iy},
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Then - ¢ = \/ A. To see that \/ A - 9, observe that if I} C &, then Bel,($T) F
b,y for each v € I, and if &7 C I, then B,(\/ &) F B,(\/ ). Conversely,
assume that ¢ ¥ \/ A, i.e. that ¢ is consistent with =\/ A. This entails that 1
is consistent with a formula 6 constructed as a conjunction out of the negation
of one conjunct from each § in A. But by construction of v there is no such 6
which is consistent with . a

Lemma 8. Let ¢ be L£,"-saturated and satisfy strong independence, and let §
be a dozastic a-alternative spanned by I' C ®. Then 0 is a complete theory over

a
‘CkJrl'

Proof. We need to prove that either § = ¢ or § = = for every v € L7, .
By Lemma 2, we may without loss of generality assume that ¢ is first-order.
The result for Boolean combinations of formulae follows easily once the result is
established for modal atoms. It suffices to deal with the case where 1 is of the
form B,y, as the other cases are symmetrical.

Let § - Bel,(I1) and F ¢ = \/ I, I and I subsets of @. There are two
cases. Either I'1 C Iy, or there is a formula 7y such that v € Iy and v ¢ I'». In the
first case, \/ I1 F V I2. By modal logic, B,(\/ I1) F Bu(\ I2), and so § - B, .
In the second case, v A \/ I3 F L by strong independence. By modal logic,
b,y F be—(\/ I2). Since § F b,y, we get that 6 F b,—(\/ I32), i.e. § - "Bgyp. O

We are now ready to generalize the single-agent notion of an atom to the
multi-agent case. In the single agent case, an atom « can be interpreted as a
complete characterization of the material content of a state of affairs. In the
multi-agent case, we want for each agent a; € I, I = {ai,...,an}, and each
modal depth & to define a doxastic alternative §;, such that §; completely char-
acterizes the cognitive state of agent a;. A conjunction a Ady A---Ad,, is then a
complete characterization of the material content of a state of affairs, as well as
a complete characterization of the cognitive state of every agent. As we shall see,
the conjunction aw A §1 A -+ A 0y is & complete theory for Li. This conjunction
will be referred to as an I-atom with depth k.

Given a set of I-atoms with depth k, the doxastic alternatives for agent a
with depth k& + 1 will be defined over this set. Intuitively, where @ is the set
of I-atoms with depth k, the set of formulae Dox,(®) is the set of doxastic a-
alternatives with depth k£ + 1. This is, however, not the correct generalization
of the single agent case, since in the single-agent case, a doxastic alternative is
defined over a set of purely Boolean formulae. Generalizing this is to define a
doxastic alternative for agent a; over a set of formulae free of modality a. To
this end, we will define a set of formulae from L,\va each formula of which forms
a complete theory for £,".

Convention. Let ¢ = aAdy A--- Ady, be a formula such that o € Ly and d;

is a doxastic a-alternative. Then la;/T]| = @ AGL A+ A1 AT Adig1 A+ Adp,.
If @ is a set of I-atoms, P[a;/T| = {p[a;/T]| ¢ € P}.
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Definition 2 (I-atoms). The set of I-atoms Py, with depth k is defined as
follows: &g is the set of atoms, while P11 is all formulae a Aoy N -+ Ay, Such
that

— « 18 an atom,
— 0; is a dozastic a;-alternative spanned by the set I; C Pyla;/T],
— o € Dy, such that p - « and for each a;, ¢la;/T] € T;.

From now on &y, refers to the set of I-atoms with depth k. The third condition
in the definition above is a consistency condition as witnessed by the following
result.

Lemma 9. Assume that each @y, satisfies strong independence and that Pila/T]
is L£,"-saturated for each agent a. Let  be an atom and &; be a dozastic a;-
alternative spanned by I'; C Pyla;/T]. Then a Aoy A -+ Ady, is consistent if and
only if Jp € @ such that ¢ - « and for each a;, pla;/T] € I;.

Proof. Note that if §; is spanned by the set I; C @xa;/T], then 6; - O, (\/ I3).
By axiom T, §; - \/ I;. Since the conjuncts of ¢ are of different modalities (the
atom purely Boolean, however), inconsistency of ¢ can stem from axiom 7" only.
Hence, it suffices to prove that the consistency condition ensures consistency of
v=aAVI1AN-- AT

Also note that @y is the set of atoms (which is trivially Ly-saturated) and
that the condition for £ = 1 then simply states that there is an atom « such
that « € I for each I;. If there is a I; such that o ¢ I';, Lemma 6 gives that
\/ I; F —a. Hence ¢ is inconsistent. Conversely, if ¢ is inconsistent, there must
be a I; such that o ¢ I, and hence the condition is not satisfied.

If £ > 1, suppose that the condition is not satisfied. Then, for each ¢ € &y
which entails « there is a I; such that ¢[a;/T| ¢ I5. It follows from this that
given any two distinct sets I and I, each two elements ¢1]a;/T] € I; and
w2la;/T] € I; must disagree on a doxastic gj-alternative, a; # a; # a;. In
other terms, there are two distinct doxastic a;-alternatives d; and d such that
¢1]lai/T] F 61 and @afa;/T] F ;. By the strong independence assumption,
1 Aoz B L, and so p1]a;/T] A @2la;/T] F L. Since this holds for any two
distinct sets I and I'j, ¢ must be inconsistent.

Suppose conversely that 1) is inconsistent. There are two cases. In the first
case, there is a set I such that \/I; F —a, i.e. for each ¢ € &5 such that
¢ b a, there is a set I; such that ¢[a;/T] ¢ Ij. Then the condition is not
satisfied. In the second case, there are two distinct sets I; and I; such that
VI AV I+ L. Then, for each two elements o1[a;/T] € I and ¢sla;/T] € I},
w1]a;/T] A pala;/T] F L. We may assume that « is entailed by both ¢1 and ¢
since this was treated in the first case. Since 1]a;/T] A p2la;/T] F L, the two
formulae must disagree on a doxastic a;-alternative, and hence ¢; and @9 are
two distinct elements of @;. The condition is then not satisfied. O
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Lemma 10. The set §i[a/T] satisfies strong independence.

Proof. The base case is when k = 0. $y[a/T] is the set of atoms, and it is imme-
diate that the set of atoms satisfies strong independence. Suppose inductively
that ¢ and v are two distinct elements of ®@;41[a/T]. Then ¢ and 1) either dis-
agree on an atom or on a doxastic b-alternative, b # a. In the first case, it is
immediate that ¢ A1 L. In the second case, let ¢ = &} and ¢ = 62, where &;
and 53 are doxastic b-alternatives spanned by I and I%, respectively, It and
I’y subsets of @, [b/T]. By the induction hypothesis, b/ T] satisfies strong in-
dependence. By Lemma 5, §; A 67 = L. Hence p Ay F L. o

Corollary 1. The set of dozastic a-alternatives spanned by subsets of Pla/T|
satisfies strong independence.

Proof. Immediate from Lemma 10 and Lemma 5. a
Lemma 11. &[a/T] is £,"-saturated and Doxo(P[a/T]) is Lf , -saturated.

Proof. Both properties are proved by simultaneous induction on k. In the base
case @5 = @3”. It is easy to see that the first condition holds. Since @ is Lg-
saturated, the second holds by Lemma 7.

Pri1la/T]is L)1 -saturated (induction step). We have to prove that for each
¢ € L), there is a subset of @j11[a/T] the disjunction of which is equivalent to
©. It is easy to see (using the DNF equivalent of each formula) that it is sufficient
to prove this for ¢ of the form ©F A p® A--- A@® where ¥ is purely Boolean,
©®is T and every other ¢ is in £’ . Let the atom set @P be the set of atoms
which imply ¥, 3* be {T} and $* be the set of all § € Dox,, (®x[a;/T]) such
that 6 F ¢. Let @ be the set of every formula aAdy A« Adyy, in Pri1[a/T] such
that o € $ and &; € p™.

It follows by construction that \/ @ F ¢. Conversely, assume that ¢ is con-
sistent with —\/ @. By induction hypothesis and Lemma 6, - Dox,, (Pr[a:/T]).
This entails that there must be a consistent ¥ of the form aAdy A+ -+ Ad,, which
implies ¢ and which is not in @x1[a/T]. But this is only possible if § violates
the third subcondition in the definition of @, (Definition 2). By Lemma 9, 9
is inconsistent. Contradiction. Hence F ¢ = \/ ¢.

Dox, (@ [a/T]) is L, ;-saturated (induction step). By the induction hypoth-
esis, Ppla/T] is L) -saturated. Then, by Lemma 7, Doxq(Pkla/T]) is Lf, ;-
saturated. O

Theorem 2. FEach formula ¢ € @2"’ is a complete theory over L',,\Ca. Each doz-
astic alternative § € Dox,(®x[a/T]) is a complete theory over L ;.

Proof. By Lemma 10, ®;[a/T] satisfies strong independence and by Lemma 11
®pla/T] is L) -saturated. By Lemma 8, each § € Dox,(®x[a/T]) is a complete
theory over Lf ;. Since each § € Dox,(®r—1[a/T]) is a complete theory over Ly,
it follows that each ¢ € @4[a/T] is a complete theory over £,". O
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Having defined the set of I-atoms, we may now define the logical space for
the multi-agent case. A logical space of agent a up to depth k is defined over a
subset I' of ®la/T] by the formula Lspace,(I"). Observe that for k = 0, the
logical space is defined by the formula Lspace,(A), A C @y, which is a logical
space as defined for the single-agent system A.

Corollary 2. Let \ be a logical space for agent a up to k and ¢ € [Z,\Ca. Then
either A= Qqp or A =0,0.

4 Examples

In Section 6.1 of [4], Halpern and Lakemeyer give examples of how their logic
can be used to represent default reasoning in a multi-agent situation. We will
show how the inferences are carried out in the logic Aj.

Example 1. The first example of Halpern and Lakemeyer is this. Let p be agent
a’s secret and suppose he makes the assumption that unless he believes that b
knows his secret, he assumes that she does not know it. We will now prove that
if this is all he believes and if it is conceivable that b does not know his secret,
then he believes that she does not know his secret. Formally, we show

Aa A Oa(ﬁBaBbp D) ﬁ]—))bp) F B,—Byp,

where )\, is the logical space of agent a. Let ¢ denote -B,Byp DO —B;p. Note
that the assumption that it is conceivable to a that b does not know his secret
implies that A\, F 0, Bpp. Let us turn to the formal derivation.

1. A AOgp FBgy PL

2. Mg ANOgp F Cy—p PL

3. A ANOgpt (Bap A—=ByBpp) D B,—Bpp  normal logic, A;
4. A ANOgp - Co—p D (Cu—ByByp A C,Byp) normal logic

5. A AN Ogp F Ou—Byp assumption

6. \g ANOgp F C,Byp D -B,Byp 5, PL

7. Aa AN Ogp b =BiByp 2,4, 6, PL

8. Aa AN Ogp B, —Byp 1, 3,7, PL

In the third line, we made use of the modal reductive strength of the logic. The
critical point in the derivation is of course the fifth line. This theorem rests on
the assumption that =Byp is conceivable to agent a. The derivation in the system
of Halpern and Lakemeyer is somewhat longer, since they need to apply some
extra machinery to reason about validity and satisfiability.

The nonmonotonicity becomes apparent when we add Byp to the belief set
of agent a, or we define the logical space such that A\, F —0,—Byp. Then B,Byp
is deducible.

Example 2. In their next example, Halpern and Lakemeyer show how one agent
reasons about another agent’s ability to reason nonmonotonically. The letter p
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stands for “Tweety flies”. It is then shown that if a believes that all b believes
is that by default Tweety flies, then a believes that b believes that Tweety flies.

Again, it is the logical space that makes the deduction go through in our
system. But here, since a reasons about b’s ability to reason nonmonotonically,
if @ is to derive the conclusion that b believes p, a must believe that the conceiv-
ability space of b is such that p is conceivable. Le., the logical space A, of b must
be such that A\, - Opp. Note that since the nonmonotonicity in this example is
about b, we need not consult the logical space of a.

What we want to prove is thus that

Ba()\b N Ob(bbp D p)) [ BaBbp.

In the same pattern as in the previous example, we may show that Ay AOp(bpp D
p) b Byp, given the assumption that A\, = Qpp. The difference is that we now
reason about agent b and that —Byp is replaced with p. The desired result then
follows by normal logic.

The assumption we made that a believes )\, is a stronger assumption than
what we actually need. It may very well be such that a believes that b has one
of several different conceivability spaces. The assumption we need is that every
logical space of agent b compatible with a’s beliefs must be such that Opp is
implied by it.

5 The Modal Reduction Theorem

We will in this section assume a sub-language L5 bound by a finite set of propo-
sitional letters P, a finite set of indices I and a given modal depth k. Let the
logical space A of agent a be given, and let 8 be any formula. The modal reduc-
tion theorem states that there are formulae 31, ..., 3, free of modality a, such
that

AFOLB=0,6 V-V O,B.

Moreover, each formula O,03;, i < m, is defined directly from one of the a-
clusters satisfying A A O, /3, and each such a-cluster is represented by a formula
Oaﬂi'

Let A A Oy have depth k. We will say that A A Oy is an explicit belief
representation if for any formula ¢ € L§, either AA Oqp =1 or AN Qg F 1.
In other terms, an explicit belief representation is a formula that determines the
agent’s attitude towards any formula in the language.

Theorem 3. Let ¢ be any formula free of modality a. Then X A Ogp is an
explicit belief representation.

Related to the notion of an explicit belief representation is the notion of an
implicit belief representation, i.e. formulae of the form A A O, that allow am-
biguity with respect to a-modalized formulae. An implicit belief representation
is a formula A A O, where ¢ is not free of modality a. By applying the modal
reduction theorem, such formulae are reduced to disjunctions of formulae, each
of them an explicit belief representation.
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6 Related Work

We will in this section prove the equivalence of the system A; with two earlier
attempts of generalizing the system of Levesque [7]. The first of these other
systems is the system HL of Halpern and Lakemeyer [4], where a generalization
of Levesque’s system is provided by coding the satisfiability relation into the
system. Notice that the language of HL is an extension of £. We will prove the
equivalence with A; with respect to the common part of the languages. The
second system is the system L; of Waaler [12], where the {-axiom of Levesque’s
system is generalized to the statement that ¢, is a theorem provided that ¢ is
a consistent formula free of modality a.

The deducibility relations of HL and L; are denoted kg, and Fr,, respec-
tively. In [12], the equivalence of L; and HL was established. We will in this
section prove the equivalence of the system Z; and the system L;. The equiva-
lences of the three systems then follow as a corollary.

6.1 The system Lj

Let H be the deducibility relation given by removing the axiom schema T from
the system ;. The deducibility relation k1, of the system Ly is defined as the
least relation extending H’ containing every instance of the following schema for
each agent a € I:

Qa : Qo provided p ¥, L, ¢ free of modality a.

There is a circular pattern to the Q,-axiom, but in [12], it is shown that the
circularity is not vicious. This result is captured by Lemma 12 below.

As in Aj any formula is provably equivalent to a first-order formula in Lj.
Moreover, T' is a theorem of L;. Hence, L is an extension of A;. For proof of
these claims consult [13].

6.2 Equivalence of Ej and Ly

Ly is a proper extension of A;. However, equivalence between the systems can
be established for sublanguages up to a given depth by strengthening A; with
a particular set of formulae. In the single-agent case, when the maximal logical
space is added to the axioms of &, the system /& is equivalent to the propositional
fragment of Levesque’s system. What we need to do in the multi-agent case is
to identify a set of formulae that, when added to the axioms of A, yields
equivalence of Ay and Lj.

Definition 3 (Maximal I-atoms). The set of maximal I-atoms with depth k
is defined as follows: ®q is the set of atoms, while @41 is all formulae a A §1 A
-+ A O, such that

— « 18 an atom,
— 0; s a dozastic a;-alternative spanned by Pyla;/T],
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The critical difference between the definition of a maximal I-atom and the
definition of an I-atom as defined in Definition 2 is that §; in the inductive
step of the definition of a maximal I-atom is spanned by ®[a;/T], and not
subsets of ®i[a;/T]. The consistency condition is furthermore omitted. This is
because formulae a A 31 A -+ - A dy, trivially satisfy the consistency condition in
the definition of the maximal I-atoms. (We omit the easy proof of this claim.)

The mazximal logical space of agent a; with depth k is now defined as \; =
Lspace, (@r_1]ai/T]). We will prove that the set of formulae A = {X\; | a; € I}
added to the axioms of & yields equivalence with L; up to depth k.

Before we proceed, we need an important result from [12]. This result states
that Lj-consistency of a formula ¢ free of modality a is established without
reference to the theorem O, p.

Lemma 12. Let ¢ be Li-provable. Then there is an Li-proof © of ¢ such that
d(v) < d(p) for every instance of an aziom Qq1) which is used in 7.

Theorem 4. Let A be the set of mazximal logical spaces with depth k for each
agent a; € I and d(p) < k. Then AF ¢ iff Fr, ¢.

Proof. The proof is by induction on the depth of the logical spaces, and both
directions are proved simultaneously. As = C Fr,, we need for the ’only if’
direction to prove that Fr,, A A. For the ’if” direction, we need to prove that L;
is a strengthening of &; by A A only. That is, we need to prove that O, is
deducible in Ej from A, where {,,¢ is derivable in L; by an application of O,
to a formula o, where d(p) < d(\;).

The base case is when each ); is spanned by the set of atoms &q. 'Only if’:
As every atom « is Ly-consistent, Fr,, 04« by the ¢, ,-axiom, and since \/ @
is a PL-tautology, we get Fr, 04, (\/ ®o) by RN. So Fp, A; for every \; € A.
'If”: Suppose 1, Oq, ¢ is deduced in Ly by an application of {g,. It must then
be the case that ¢ is a purely Boolean formula such that ¢ ¥r, L. Since L;
extends Ay, ¢ ¥ L. There is then an atom « such that a - ¢. By modal logic,
Qa0 Qg 0, and so A; F Og, 0.

In the inductive step, let d(\;) = k+1, A; spanned by @k [a;/T]. 'Only if’: We
need to establish that ¢ ¥, L for every ¢ € @la;/T] and that b, \/ Pkla;/T].
Once these two properties are established, we may apply O, to the first and RN
to the latter to get the desired result.

Note that 1 is a conjunction of an atom and a doxastic aj-alternative J; for
each a; # a;. Each 0; entails the maximal logical space \}, d(d;) = k. Let A’ be
the set of maximal logical spaces with depth k for each a; # a;. By construction
of the logical space, we have ¥ A A’ ¥ L. By the induction hypothesis, ¢ ¥, L.
By axiom O,, we get Fr, Oq, .

Let A; be the doxastic a;-alternatives spanned by @r_1[a;/T]. Observe that
for each §; € Aj;, d(d;) = k and ¢; = A}, where \} is the maximal logical space
with depth k for agent a;. Notice that the set of conjunctions of an atom and
a formula ¢; € A; for each a; # a; is exactly the set of formulae Prla;/T]. In
order to prove Fr, \/ @la;/T], we will prove that Fr, \/ A; for each a; # a;.
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The result then follows by standard propositional reasoning and the fact that
Fr, \V Po.

We will first prove that A = \/ Aj;. Suppose that \; ¥ \/ A;, ie A A
=(V 4;) ¥ L. By Lemma 11, there is a doxastic a;-alternative ¢} with depth &
such that 0 = X; A =(\/ 4;). But then ¢} = )}, and so §; € A;. Contradiction.
Since A} =\ A;, we get k1, \/ A; by the induction hypothesis. b1, \/ @xla;/T]
follows by standard propositional reasoning, and tr,, Og, (\/ @x[a;/T]) by RN.

'If’: Suppose b, Oa; 0, d(@) < d(N;), A € A, is deduced in Ly by an applica-
tion of {g,. It must then be the case that ¢ is a formula free of modality a; such
that ¢ ¥, L. By Lemma 12, any application of the {,,-axiom to establish the
consistency of ¢ is to formulae with depth < d(¢). By the induction hypothesis,
A" A p ¥ L, where A’ is the set of maximal logical spaces with depth & for each
a; 7£ ;.

We may without loss of generality assume that ¢ is first-order and on DNF.
Since A’ Ap ¥ L, there is a disjunct 1 of ¢ such that A’Ay ¥ 1. is a conjunction
of a purely Boolean formula 17 and a completely a;-modalized formula )% for
each a; # a;. Since \; A% ¥ L, N; € A’, there is by Lemma 11 a doxastic
aj-alternative d; with depth k such that d; = \; A% . Let A be the set of these
formulae d; for each a; # a;. As to ¥”, there is an atom « such that o - ¢,
Since each J; entails the maximal logical space, the consistency condition is
trivially satisfied, and so a A A ¥ L. Since each element of {a} U A entails a
respective conjunct of ¢, we have a A A ¢, and so a A A F ¢. Observe that
the conjunction e A A A is an element of @xla;/T] and that Ou (A A A) is a
conjunct of the maximal logical space \; with depth k. Since a A A F ¢, we have

Qa; (@ NN\ A) F O, by modal logic, and so A; F Oq, ¢ as desired. O
Corollary 3. A ¢ iffbr, v iff Fm @, v € L, provided d(¢) < d()\;) for each
A € A.

Proof. Follows immediately from Theorem 15 of [12] and Theorem 4. O

7 Conclusion and Future Work

The focus of this paper is on the logical foundation of multi-agent systems.
We have successfully developed a notion of logical space for agents in a multi-
modal only knowing language. Clearly, a practical application will require a
more economical way of representing and reasoning within logical spaces, typi-
cally achieved by means of highly restricted languages. However, to implement
constraints like this, one needs to know what “all the options” are. This paper
presents an answer to this fundamental and conceptually important question.
A number of interesting questions can be raised on the basis of this logical
clarification. First, we have not presented any complexity analysis. The size of a
logical space grows quickly beyond any tractable level. However, in a particular
situation one will not need to span the entire space syntactically, exactly like
one in /A can provide an implicit definition of a logical space by means of a
characteristic formula [8,11]. We plan to address this question in a subsequent
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paper. We also plan to extend the reduction method used to give a constructive
proof of the Modal Reduction Theorem in /E to A and to extend the language
with language constructs to express different degrees of confidence for each agent
(like in /). The latter task is in itself straightforward; however, a non-trivial use
of this would be to develop a theory of multi-agent default reasoning within this
language which generalizes the encoding of default logic in & [1].
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Abstract. This paper studies compositional semantics of nonmonotonic
logic programs. We suppose the answer set semantics of extended disjunc-
tive programs and consider the following problem. Given two programs
Py and P», which have the sets of answer sets AS(P1) and AS(P), re-
spectively; find a program @ which has answer sets as minimal sets SUT'
for S from AS(P;) and T from AS(P2). The program ) combines an-
swer sets of P; and P», and provides a compositional semantics of two
programs. Such program composition has application to coordinating
knowledge bases in multi-agent environments. We provide methods for
computing program composition and discuss their properties.

1 Introduction

Combining knowledge of different information sources is a central topic in multi-
agent systems. In those environments, different agents generally have different
knowledge and belief, then coordination among agents is necessary to form ac-
ceptable agreements. In computational logic, knowledge and belief of an agent
are represented by a set of formulas. Combining multiple knowledge bases is then
formulated as the problem of composing different theories. In multi-agent envi-
ronments, individual agents are supposed to have incomplete information. Since
theories including incomplete information are nonmonotonic, it is important and
meaningful to develop a framework of composing nonmonotonic theories.

To see the problem, suppose the following scenario: there is a trouble in a
system which consists of three components c1, ¢, and c3. After some diagnoses,
an expert e; concludes that the trouble would be caused by one of the two com-
ponents c¢; and ¢y, but they are unlikely to be in trouble at the same time. On the
other hand, another expert e; concludes that the trouble would be caused by one
of the two components ¢; and c3, while they would not disorder simultaneously.
Two experts’ diagnoses are encoded as the following logic programs:

e;: ¢ < notca,

cy —— notcy,



es @ cy < notcs,

c3 «— notcs.

Here, not represents negation as failure and the rules ¢; < not ¢; and ¢; « not ¢;
encode two alternative causes. By merging two programs, the program e; U e
has two answer sets {c1,c3} and {ca}, which would be acceptable to each expert.
(Note: e (resp. es) represents that ¢; and ¢y (resp. ¢ and c¢3) are alternative
causes of the problem, but each expert does not exclude the possibility of having
¢1 and c3 at the same time.)

The story goes on: e; consider that the possible cause is either c¢; or ¢z, but
he empirically knows that c¢; is more likely to cause the trouble. Similarly, e
consider that the possible cause is either co or c3, but she empirically knows that
co is more likely to cause the trouble. Two experts then slightly modify their
diagnoses as

/

€1 : €1 < notca,
Co < (1,

ey : ¢y +— notcs,

C3 < T1Ca.

After the modification, e} is read as: ¢; is considered a cause if there is no
evidence of co, and ¢y will not become a cause unless ¢; is explicitly negated. e}
is read in a similar way. Merging two programs, however, the program e} U €}
has the single answer set {ca}, which reflects the result of diagnosis by e} but
does not reflect €f. When two experts are equally reliable, the result might be
unsatisfactory. In fact, e} puts weight on ¢y relative to ¢s and e} puts weight on
c1 relative to co. After integrating these diagnoses, there is no reason to conclude
co as the plausible conclusion.

The above example illustrates that composition of nonmonotonic theories is
not achieved by simply merging them. The problem is then how to build a
compositional semantics of nonmonotonic theories. In this paper, we consider
composition of extended disjunctive programs under the answer set semantics
[11]. An answer set is a set of literals which corresponds to a belief set being
built by a rational reasoner on the basis of a program [2]. A program generally
has multiple answer sets, and different agents have different collections of answer
sets. We then capture composition of two programs as the problem of building
a new program which combines answer sets of the original programs. Formally,
the problems considered in this paper are described as follows.

Given: two programs P; and Ps;

Find: a program @ satisfying AS(Q) = min(AS(P;) W AS(P,)) where AS(P)
represents the set of answer sets of a program P and AS(P;) W AS(P,) =
{SUT | SeAS(P)and T € AS(P»)},

where min(X) = {Y € X | =3Z € X s.t. Z C Y }. The program @ satisfying
the above condition is called composition of P; and P,. The result of composition
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combines answer sets of two programs, which has the effect of amalgamating the
original belief of each agent. We develop methods for constructing a program
having the compositional semantics.

The rest of this paper is organized as follows. Section 2 introduces basic
notions used in this paper. Section 3 presents compositional semantics and its
technical properties. Section 4 provides methods for building programs which
reflect compositional semantics. Section 5 addresses permissible composition for
multi-agent coordination. Section 6 discusses related issues and Section 7 sum-
marizes the paper.

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic
programming.

A program considered in this paper is an extended disjunctive program (EDP)
which is a set of rules of the form:

Lyy---3 Ly «— Liyq,..., Lyy,not Lyyyq, ..., not Ly,
(n>m>1>0)

where each L; is a positive/negative literal, i.e., A or A for an atom A, and
not is negation as failure (NAF). not L is called an NAF-literal. The sym-
bol “” represents disjunction. The left-hand side of the rule is the head, and
the right-hand side is the body. For each rule r of the above form, head(r),
body™ (r) and body~ (r) denote the sets of literals {L1,..., L}, {Liy1,---, L},
and {Ly41,..., Ly}, respectively. Also, not_body~(r) denotes the set of NAF-
literals {not Ly, +1,...,not L,}. A disjunction of literals and a conjunction of
(NAF-)literals in a rule are identified with its corresponding sets of literals. A rule
r is often written as head(r) « body™ (1), not_body™(r) or head(r) « body(r)
where body(r) = body™ (r) Unot_body~(r). A rule r is disjunctive if head(r) con-
tains more than one literal. A rule r is an integrity constraint if head(r) = 0; and
ris a fact if body(r) = 0. A program is an extended logic program (ELP) if it con-
tains no disjunctive rule. A program is NAF-free if no rule contains NAF-literals.
A program with variables is semantically identified with its ground instantiation,
and we handle propositional and ground programs only.

The semantics of EDPs is given by the answer set semantics [11]. Let Lit be
the set of all ground literals in the language of a program. A set S(C Lit) satisfies
a ground rule 7 if body™ (r) C S and body ™ (r)N S = @ imply head(r)NS # 0. In
particular, S satisfies a ground integrity constraint r with head(r) = () if either
body™ (r) € S or body~(r) NS # 0. S satisfies a ground program P if S satisfies
every rule in P.

Let P be an NAF-free EDP. Then, a set S(C Lit) is an answer set of P if S
is a minimal set such that

1. S satisfies every rule from the ground instantiation of P,
2. If S contains a pair of complementary literals L and =L, S = Lit.
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Next, let P be any EDP and S C Lit. For every rule r in the ground instantiation
of P, the rule head(r)NS «+ body™ (r) is included in the reduct °P if body™ (r) C S
and body~(r)NS = ). Then, S is an answer set of P if S is an answer set of “P.

Remark: The definition of a reduct presented above is slightly different from
the original one in [11]. In [11], the rule head(r) < body™ (r) is included in the
reduct P* (called Gelfond-Lifschitz reduction) if body ™ (r)N.S = @. Our reduction
imposes additional conditions, but two reductions produce the same answer sets
of EDPs.

Proposition 2.1 For any EDP P, S is an answer set of SP iff S is an answer
set of PS.

Proof. If S is an answer set of P, it is a minimal set satisfying every rule in
P5. For any rule 7 in *P\ P% it holds body™ (r) C S, (head(r) « body™ (r)) €
P% and (head(r) NS « body*(r)) € SP. As S satisfies P°, body™(r) C S
implies head(r) NS # 0. So, S satisfies “P. Assume that there is a minimal set
T C S satisfying every rule in “P. Any rule r in P\ °P satisfies either (a)
body™ (r) € S or (b) body™(r) C S, (head(r) « body™(r)) € P¥ and (head(r) N
S « body™*(r)) € °P. In case of (a), body*(r) ¢ S implies body™*(r) ¢ T.
Then, T satisfies r. In case of (b), as T satisfies P, body*(r) C T implies
T N (head(r) N S) # 0, thereby T N head(r) # 0. Thus, in each case T satisfies
every rule in P°. This contradicts the fact that S is a minimal set satisfying P*.
Then, S is also a minimal set satisfying every rule in °P. Hence, S is an answer
set of P. The converse is shown in a similar manner. O

Ezxample 2.1. Let P be the program:

p;q<—,
q<—Dp,
T < notp.

For S = {q,7}, P* becomes

p;q,
q<Dp,

T <—
while 5P becomes

q <,

T

Each reduct produces the same answer set S. Note that {p, ¢} does not become
an answer set of P.
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For later convenience, we use the reduct °P for computing answer sets of P.

A program has none, one, or multiple answer sets in general. The set of all
answer sets of P is written as AS(P). A program having a single answer set is
called categorical [2]. Categorical programs include important classes of programs
such as definite programs, stratified programs, and call-consistent programs. Every
NAF-free ELP has a single answer set. An answer set is consistent if it is not
Lit. A program P is consistent if it has a consistent answer set; otherwise, P is
mconsistent.

A literal L is a consequence of credulous reasoning in a program P (written as
L € crd(P)) if L is included in some answer set of P. A literal L is a consequence
of skeptical reasoning in a program P (written as L € skp(P)) if L is included
in every answer set of P. Clearly, skp(P) C crd(P) for any P.

3 Combining Answer Sets

In this section, we introduce a compositional semantics of programs. Throughout
the paper, different programs are assumed to have the same underlying language
with a fixed interpretation.

Let S and T be two sets of literals. Then, define

SuT, if SUT is consistent;

ST = {Lit, otherwise.

For two collections S and 7 of sets, define

ST ={SWT|SeSandTeT}.

Definition 3.1. Let P; and P, be two consistent programs. A program @ is
called a composition of P; and Pj if it satisfies the condition

AS(Q) = min(AS(P1) W AS(P,))
where min(X)={Y eX | -3Ze€ Xst. ZCY }.

The set AS(Q) is called the compositional semantics of P, and P,. By the
definition, the compositional semantics is defined as the collection of minimal
sets which are obtained by combining answer sets of the original programs.

Ezample 3.1. Let AS(Py) = {{p},{q}} and AS(P:) = {{p},{r}}. Then, the
compositional semantics becomes AS(Q) = {{p},{q¢,7} }-

Note that we do not consider composition of inconsistent programs, because
such composition appears meaningless and trivial. So in program composition
consistent programs are handled hereafter.

Proposition 3.1 Let P, and Py be two consistent programs, and Q a result of
composition. Then, VS € AS(Q), IT € AS(P1) UAS(P,) s.t. T C S.
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Proposition 3.1 presents that every answer set in the compositional semantics
extends some answer sets of the original programs. On the other hand, the
original programs may have an answer set which does not have its extension in
their compositional semantics.

Ezample 3.2. Let AS(Py) = {{p,q}} and AS(P2) = {{p},{q,r}}. The compo-
sitional semantics of P; and P5 becomes AS(Q) = {{p, ¢}} which extends {p, ¢}
of P; and {p} of P, but does not extend {g,r} of Ps.

In the above example, {p, ¢} absorbs {p} and remains as a result of compo-
sition. Consequently, the set {p, g, r}, which combines {p, ¢} of P, and {g,r} of
P>, becomes non-minimal and is excluded from the result of composition.

Such cases are formally stated as follows.

Definition 3.2. Let P; and P, be two consistent programs, and @ a result of
composition. When AS(Q) = AS(P1), Pi absorbs Ps.

In Example 3.2, P; absorbs P;. If one program absorbs another program, the
compositional semantics coincides with one of the original programs. The next
proposition characterizes situations in which absorption happens.

Proposition 3.2 Let Py and Py be two consistent programs, and Q a result of
composition. Then, Py absorbs Py iff for any S € AS(P1), there is T € AS(Pz)
such that T C S.

Proof. For any S € AS(P;), suppose that thereis T' € AS(P;) such that T C S.
As SUT =8, AS(P;) C AS(Q). Suppose any T7 € AS(P,) such that T/ € S
for any S € AS(Py). Then, S C SUT’. Since S € AS(Q), SUT" ¢ AS(Q).
Thus, AS(Q) \ AS(Py) = 0. Hence, AS(Q) = AS(P)).

Conversely, if AS(Q) = AS(Py), for any S € AS(Py) there is T € AS(P)
such that S = SUT. Then, T C S. O

Skeptical/credulous inference in compositional semantics has the following
properties.

Proposition 3.3 Let P, and Py be two consistent programs, and Q a result of
composition. Then,

1. erd(Q) C erd(Py) U crd(Py).
2. skp(Q) = skp(P1) U skp(P%).

Proof.  The result of (1) holds by Proposition 3.1. To see (2), if any literal L
is included in every answer set S in AS(P;) or included in every answer set T
in AS(P2), it is included in every S UT in AS(Q). Conversely, if any literal
L is included in every answer set U in AS(Q), L is included in every minimal
set SUT for some S € AS(P;) and T € AS(P2). Suppose L € S and there is
S’ € AS(Py) such that L ¢ S’. Then, there is T € AS(P2) such that L € T.
If there is T" € AS(P2) such that L ¢ T’, then L ¢ S" U T’ thereby there is
V € AS(Q) such that L ¢ V. Contradiction. O
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Ezxample 3.3. Let AS(P1) = {{p, ¢} } and AS(P,) = {{p},{q,r}} where crd(P;) =
skp(P1) = {p,q}, crd(Ps) = {p,q,r}, and skp(P2) = (. The compositional se-
mantics of P; and P becomes AS(Q) = {{p,q}} where crd(Q) = skp(Q) =

{p,q}.

The result of composition possibly becomes inconsistent even if the original
programs are consistent.

{E’:Eam}ple 3.4. Let AS(Py) = {{p}} and AS(P;) = {{-p}}. Then, AS(Q) =
Lit}.

When AS(Q) has no consistent answer set, we consider that program com-
position fails. A necessary and sufficient condition to have a successful program
composition is as follows.

Proposition 3.4 Let P, and Py be consistent programs, and Q a result of com-
position. Then, Q is consistent iff there are S € AS(Py) and T € AS(P2) such
that SUT is consistent.

Proof. @ is consistent iff there is a consistent set SUT in AS(P;) W AS(P,) for
S € AS(Py) and T € AS(P,). Hence, the result follows. O

In program composition, the problem of interest is the cases where one pro-
gram does not absorb the other and the result of composition is consistent. In
the next section, we present methods for computing program composition.

4 Composing Programs

In this section, every program is supposed to have a finite number of answer sets.
We first introduce an additional notation used in this section. Given programs
Py, ..., Py, define

Py Py =
{ head(r1);---;head(ry) < body(r1),...,body(ry) | € P, (1 <i<k)}

Definition 4.1. Given two programs P; and P,

1. Compute R(S,T) = °P; UTP; for every S € AS(P)) and T € AS(P,).
2. Let AS(P1) ={51,...,5m } and AS(P>) = {T4,...,T, }. Then, define

Pl @PQ = R(SlaTl); ttt R(Sm»Tn)

where R(S1,T1),...,R(Sm,Ty) is any enumeration of the R(S,T)’s con-
structed in Step 1.

By the definition, Py ®P» is computed in time | Py | x| P2 | x| AS(Py)| x| AS(Ps)|,
where | P| represents the number of rules in P and | AS(P)| represents the number
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of answer sets of P. In particular, if P, and P, respectively have the single answer
set AS(P;) = {S} and AS(P,) = {T}, it becomes P, ® P, = °P, UTP;.

The program P; ® P, generally contains useless or redundant literals/rules,
and the following program transformations are useful to simplify the program:
(i) Delete a rule r from a program if head(r) Nbody™ (r) # 0 (elimination of tau-
tologies: TAUT); (ii) Delete a rule r from a program if there is another rule v’ in
the program such that head(r’) C head(r) and body(r') C body(r) (elimination
of non-minimal rules: NONMIN); (iii) A disjunction (L; L) appearing in head(r)
is merged into L, and a conjunction (L, L) appearing in body(r) is merged into L
(merging duplicated literals: DUPL). These program transformations all preserve
the answer sets of an EDP [4].

Ezample 4.1. Consider two programs:

Py: p<notq,
q < notp,
54D,

Py,: p<notr,

T < notp,

where AS(P1) = {{p,s},{q}} and AS(P2) = {{p},{r}}. Then, there are four
R(S,T) such that

R({p,s},{p}): p—, s<p,

R({p,st,{r}): p—, s<p, 1,
R({g}, {p}): ¢, p<,
R({g}{r}): g, 7.

Py ® P, contains the following seven rules (after applying DUPL):

p;q—,

p;rT =,

p;q;r—,

q; $< D,

q; 758D,

p;q;s<—Dp,

p;7r;S—p.
Further, those rules, other than the first one, the second one, and the fourth one,
are eliminated by NONMIN. Consequently, the simplified program becomes

p;q<,
p;T e,

q; s D
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The operator ® has the following properties.

Proposition 4.1 The operation ® is commutative and associative.

Proof. The commutative law P; ©® P, = P, ® P is straightforward. To see the
associative law, both (P1 ® P2) ® P3 and P; ® (P ® Ps) consist of rules of the

form: head(r1); - -+ ; head(ry) < body(ry), ..., body(ry) for r; € R(S,T,U) (1 <
i < k) where R(S,T,U) = P, UTP, UUP; for any S € AS(Py), T € AS(P»),
andUEAS(Pg).Hence,(P1®P2)®P3:P1®(P2®P3). O

Now we proceed to show the main result of this paper.

Lemma 4.2 Let Py and Py be two consistent programs, and S € AS(Py) and
T € AS(Py). Then, SUT is an answer set of “Py UTP,.

Proof. S is a minimal set satisfying “P; and T is a minimal set satisfying 7P;.
Since body(r) € S and head(r) C S for any r € °P; and body(r') C T and
head(r') C T for any v € TP,, S U T satisfies *P; U TP,. Suppose that there is
T’ C T such that S UT’ satisfies P, UTP,. For any L € T\ T',if L ¢ S, T
satisfies 7P,. But this cannot happen, since T is a minimal set satisfying 7Ps.
Then, L € S, thereby SUT = SUT’. Thus, SUT is a minimal set satisfying
Sp, UTP,. As P, UTP, is NAF-free, S UT becomes an answer set of it. O

Lemma 4.3 If U is a minimal set satisfying (R(S,T); R(S',T")), U is a min-
imal set satisfying R(S,T).

Proof. If there is V' C U satisfying R(S,T), for any rule r € R(S,T) it holds
body(r) € V or head(r) C V. Then, V satisfies every rule head(r); head(r') «—
body(r), body(r’") in (R(S,T); R(S',T")) for any ' € R(S’,T'). This contradicts
the fact that U is a minimal set satisfying (R(S,T); R(S’,T")). O

Theorem 4.4. Let Py and P> be two consistent programs. Then, AS(P1®Py) =

Proof. Let U € min(AS(Py) W AS(P;)). Then, there is S € AS(P;) and
T € AS(P,) such that U = SUT. By Lemma 4.2, U is an answer set of R(S,T).
Then, U satisfies P, ® P,. Suppose that there is a minimal set V' C U which
satisfies P; ® P». In this case, V is a minimal set satisfying some R(S’,T") in
P, ® P, (Lemma 4.3). It then holds that V' = S’ U T’ for some S’ € AS(P;)
and T" € AS(P,) (by Lemma 4.2). Since V € AS(P1) W AS(P,) and V C U,
U & min(AS(P1) W AS(P,)). Contradiction. Thus, U is a minimal set satisfying
P1®P2, SO UGAS(P1®P2)

Conversely, let U € AS(P; ® P3). Then, U is a minimal set satisfying some
R(S,T) in P, ® P> (Lemma 4.3). It then holds U = SUT for some S € AS(P;)
and T € AS(P,) (by Lemma 4.2). Thus, U € AS(P;) W AS(P,). Suppose that
there is a minimal set V' C U such that V = S’ U T’ for some S’ € AS(P;)
and T € AS(P,). In this case, V € min(AS(P;) W AS(P)), and V becomes
an answer set of Py ©® P by the proof presented above. This contradicts the
assumption of U € AS(Py ® P,). Hence, U € min(AS(P) W AS(P2)). O
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Ezample 4.2. In Example 4.1, AS(P1 ® P2) = {{p,q}, {p, s}, {q,r}}, which co-
incides with the result of composition.

Two programs P; and P, are merged by taking their union P; U P». Program
composition and merging bring syntactically and semantically different results
in general, but there are some relations for special cases.

Proposition 4.5 For two consistent NAF-free programs Py and Py, if Py U Py
is consistent, Py ® Py is consistent.

Proof. If P, U P, is consistent, there is P, for S € AS(P;) and TP, for
T € AS(P,) such that “P; U TP, is consistent. Then, S U T is consistent. By
Proposition 3.4 and Theorem 4.4, P; ® P, is consistent. a

The converse of Proposition 4.5 does not hold in general.

Ezxample 4.3. Let Py = {p <} and P, ={« p}. Then, P, ® P, = {p < }, but
P; U P, has no answer set.

In the general case, there is no relation for the “easiness” of inconsistency
arising between composition and merging.

Ezample 4.4. Let Py = {p < not—p} and Py = {—p < notp}. Then, P, U P,
is consistent, but Py ®@ P, = {p < , —p < } is inconsistent. On the other hand,
let Ps = {p « notq, ¢q < notr} and Py = {r «— notp}. Then, P3 U Py is
inconsistent, but Ps ® Py = {¢; r < } is consistent.

For extended logic programs, the following syntactical and semantical rela-
tions hold.

Proposition 4.6 For two consistent NAF-free ELPs Py and Py, P, ©® P, C
PUP;.

Proof. In this case, each program has the single answer set. Let AS(P;) = {S}
and AS(P2) = {T}. Then, P, \ °P, = {r | r € P, and body(r) € S}, and
sp, \ P, = 0. This is also the case for P;. Since P, ® P, = 5P, UTP,, the result
follows. O

Proposition 4.7 Let P, and Py be two consistent NAF-free ELPs. Then, U C
V' holds for the answer set U of Py ® Py and the answer set V of Py U Ps.

Proof. Let AS(Py) = {S} and AS(P,) = {T}. Then, AS(P1 © P;) ={SUT}.
On the other hand, if P; U Ps is inconsistent, AS(P; U Py) = {Lit}. So, SUT C
Lit. Else if P, U P, has the consistent answer set V, S U T is consistent by
Proposition 4.5. Then, SUT C V by Proposition 4.6. O

Ezxample 4.5. Let Py = {p < q} and P, = {q < }. Then, P, © P, = {q <}

and PLUP,={p«—y¢q, q<—}.SoPLOP,CPLUP; and {q} € AS(P, ®© P») is
a subset of {p, ¢} € AS(P; U P).
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5 Permissible Composition

In Section 3, we introduced the compositional semantics of two programs and
Section 4 provided a method of composing programs. In this section, we argue
permissible conditions for the compositional semantics in multi-agent coordina-
tion. First, we introduce a criterion for selecting answer sets in the compositional
semantics.

Definition 5.1. Let P; and P, be two consistent programs, and @ a result of
composition. Then, any answer set S € AS(Q) is conservative if it satisfies every
rule in P; U Ps.

Ezxample 5.1. Recall two programs in Example 4.1,

P : p«— notg,
q < notp,
5 p,

P, : p«—notr,

T < notp,

where AS(P1) = {{p, s}, {q}} and AS(Py) = {{p},{r}}. The compositional
semantics is AS(Q) = {{p,q},{p, s} {¢,7}}. Among them, {p,s} and {q,r}
satisfy every rule in P; U P, so they are conservative. Note that {p, ¢} does not
satisfy the third rule of P;.

Conservative answer sets are acceptable to each agent because they satisfy the
original program of each agent. Unfortunately, conservative answer sets do not
always exist in the compositional semantics. For instance, in Example 5.1 if Py
contains constraints «— s and < ¢, no conservative answer set exists. Existence
of no conservative answer set is not a serious flaw in the compositional seman-
tics, however. In fact, different agents have different beliefs in the multi-agent
environment, and it may happen that one agent must give up some original be-
lief to reach a reasonable compromise. On the other hand, an agent may possess
some persistent beliefs that cannot be abandoned. Those persistent beliefs are
retained by each agent in coordination. Formally, those beliefs in a program P
are distinguished as PB C P where PB is the set of rules that should be satisfied
by the compositional semantics. In this setting, a variant of the compositional
semantics is defined as follows.

Definition 5.2. Let P; and P> be two consistent programs, and PB; and PB,
their persistent beliefs, respectively. A program {2 is called a permissible compo-
sition of P; and P, if it satisfies the condition

AS(2)={S | S € min(AS(P) W AS(P,)) and S satisfies PB; U PBs}.

The set AS(2) is called the permissible compositional semantics of P; and
P,. Any answer set in AS(£2) is called a permissible answer set. By the def-
inition, permissible composition adds an extra condition to the compositional
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semantics of Definition 3.1. The permissible compositional semantics reduces to
the compositional semantics when PB; U PBy = (. In particular, conservative
answer sets are permissible answer sets with PB; U PBy = P, U Ps.

Every permissible answer set satisfies persistent beliefs of each agent, and
extends a belief set of an agent by additional information of another agent.
Since permissible answer sets are answer sets of the compositional semantics,
they inherit properties provided in Section 3 (except Proposition 3.3(2)).

Program composition that reflects the permissible compositional semantics
is achieved by introducing every rule in PB; U PBy as a constraint to P; ®
P,. Given a program P, let IC(P) = {« body(r), not_head(r) | r € P}
where not_head(r) is the conjunction of NAF-literals {not Ly,...,not L; } for
head(r) ={Ly,...,L; }.

Theorem 5.1. Let Py and Py be consistent programs, and §2 a result of permis-
sible composition. Then, AS(2) = AS((P1 © P) UIC(PB,)UIC(PBy)).

Proof. By the definition of AS(f2) and the result of Theorem 4.4, S € AS({2)
iff S is an answer set of P} ® P, and satisfies PB; U PBy

iff S is an answer set of P; ® P, and satisfies IC(PBy) U IC(PB3)

iff S e AS((Py ® P2) UIC(PB;)UIC(PBy)). O

Ezample 5.2. Consider two programs in Example 5.1 where PB; = {s « p}
and PBs = ). Then, (P; ® P;) UIC(PB;)UIC(PBs) becomes

p;q <,
p;r e,
q; S D,
«— p, nots,

which has two permissible answer sets {p, s} and {¢,r}.

6 Discussion

A lot of studies exist for compositional semantics of logic programs (see [6,9] for
excellent surveys). A semantics is compositional if the meaning of a program can
be obtained from the meaning of its components. The union of programs is the
simplest composition between programs. However, semantics of logic programs
is not compositional with respect to the union of programs even for definite
logic programs. For instance, two definite logic programs P; = {p « ¢} and
P, = {q < } have the least Herbrand models () and {q}, respectively. But the
least Herbrand model of the program union P; U P5 is not obtained by the com-
position of ) and {¢}. To solve the problem, a number of different compositional
semantics have been proposed in the literature [6]. In composing nonmonotonic
logic programs, difficulty of the problem is understood as: “non-monotonic rea-
soning and compositionality are intuitively orthogonal issues that do not seem
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easy to be reconciled. Indeed the semantics for extended logic programs are typ-
ically non-compositional w.r.t. program union” [6]. With this reason, studies
for compositional semantics of nonmonotonic logic programs mainly concern
with the issue of devising a compositional semantics that can accommodate (re-
stricted) nonmonotonicity, or imposing syntactic conditions on programs to be
compositional [5,7,8,10,15].

In this respect, our approach is different from those previous studies. Our
primary interest is not simply merging two programs but building a new pro-
gram that combines answer sets of the original programs. One may wonder the
practical value of such combination of answer sets aside from original programs.
For instance, given two programs P; = {—p < notp} and P, = {p < }, one
would consider the meaning of program composition as the answer set {p} of
P; U P,. By contrast, our compositional semantics P; ® P» becomes inconsistent,
i.e., combination of {—p} and {p} produces Lit. To justify our position, suppose
the following situation: the agent P; does not believe the existence of an alien
unless its existence is proved, while the agent P, believes the existence of aliens
with no doubt. The situation is encoded by the above program. Then, what con-
clusion should be drawn after combining these conflicting beliefs of agents? If
one simply merges beliefs by program union, the existence of alien is concluded
by the answer set {p}. In our compositional semantics, two beliefs do not coexist
thereby contradict. In multi-agent environments, different agents have different
levels of beliefs. A cautious agent might have knowledge in a default form, while
an optimistic agent might have knowledge in a definite form. In this circum-
stance, it appears careless to simply merge knowledge from different information
sources. We then took an approach of retaining belief of each agent and combine
answer sets of different programs. As a result, the compositional semantics re-
flects information included in (at least one) answer set of the original programs.
In this sense, our program composition is intended to coordinate agents, rather
than to synthesize a program by its component. Note that program composition
should be distinguished from revision or update, in which one of two information
is known more reliable. In the above example, it is reasonable to accept Py U Py
as a result of revision/update of P, with P,. Because in this case P, is consid-
ered new information which precedes P;. In program composition P; and P, are
supposed to have the same status, so there is no reason to rely P, over P;.

Baral et al. [1] introduce algorithms for combining logic programs by enforc-
ing satisfaction of integrity constraints. They request that every answer set of
a resulting program to be a subset of an answer set of P, U P, which is dif-
ferent from our requirement. Their algorithm is not applicable to unstratified
logic programs. The compositional semantics introduced in this paper does not
enforce satisfaction of integrity constraints of original programs. One reason for
this is that in nonmonotonic logic programs inconsistency may arise aside from
integrity constraints. For instance, the integrity constraint <« p has the same
effect as the rule ¢ « p, not ¢ under the answer set semantics. Then, there seems
no reason to handle integrity constraints exceptionally in a program. If desired,
however, it is easy to have a variant of program composition satisfying con-
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straints as (P, © Py) U ICy U ICy, where IC; (i = 1,2) is the set of integrity
constraints included in P;. By the introduction of integrity constraints, every
answer set which does not satisfy ICy U ICy is filtered out. This is also realized
by a permissible version of the compositional semantics by putting PB; = IC}
and PBy = IC5. Combination of propositional theories has also been studied
under the names of merging [12] or arbitration [13], but they do not handle
nonmonotonic theories. Sakama and Inoue [14] introduce a framework of coordi-
nation between logic programs. They study two problems as follows: given two
programs P; and Ps, (i) find a program ) which has the set of answer sets such
that AS(Q) = AS(Py) UAS(P,); and (ii) find a program R which has the set of
answer sets such that AS(R) = AS(P;) N AS(P,). A program Q is called gen-
erous coordination and R is called rigorous coordination of two programs. They
provide methods of building such programs. Compared with the program com-
position of this paper, generous/rigorous coordination does not change answer
sets of the original programs. That is, generous one collects every answer set of
each program, while rigorous one picks up answer sets that are common between
two programs. By contrast, we combine answer sets of each program in every
possible way. The resulting program and its compositional semantics are both
different from generous/rigorous coordination. As addressed above, our program
composition is also intended to coordinate agents, it would be interesting to
investigate relations among those different types of coordination.

The program composition introduced in Section 4 produces NAF-free EDPs.
One may think this uneasy, because this is the case even for composing ELPs
containing no disjunction. Disjunctive programs are generally harder to compute,
so that it is desirable to have a non-disjunctive program as a result of composing
non-disjunctive programs. Technically, the program P; ® P» is transformed to a
non-disjunctive program if Py ® P is head-cycle-free, i.e., it contains no positive
cycle through disjuncts appearing in the head of a disjunctive rule [3]. If P; ©® P»
is head-cycle-free, the program is converted to an ELP by shifting disjuncts
in the head of a rule to the body as NAF-literals in every possible way as
leaving one in the head. For instance, the program P; ® P in Example 4.1 is
converted to the ELP: {p <« notq, ¢q < notp, p < notr, r < notp, q «—
p, nots, s« p, notq}. The resulting program has the same answer sets as the
original disjunctive program.

7 Conclusion

This paper has studied compositional semantics of nonmonotonic logic programs.
Given two programs, we first introduced combination of answer sets as the com-
positional semantics of those programs. Then, we developed a method of building
a program which reflects the compositional semantics of the original programs. A
permissible composition was also introduced for multi-agent coordination. The
proposed framework provides a new compositional semantics of nonmonotonic
logic programs, and serves as a declarative basis for coordination in multi-agent
systems. From the viewpoint of answer set programming, program composition
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is considered as a program development under a specification that requests a
program reflecting the meanings of two or more programs.

The approach taken in this paper requires computing every answer set of pro-

grams before composition. This may often be infeasible when a program possesses
an exponential number of answer sets. The same problem arises in computing
answer sets by existing answer set solvers, and to overcome the bottleneck some
approximation techniques would be required. Combining nonmonotonic theories
is difficult but important research topic in logic based multi-agent systems, and
there is much work to be done.
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Abstract. In multi-agents systems, incompleteness, due to either com-
munication failure or response delay, is a major problem to handle. To
face incompleteness, frameworks for speculative computation were pro-
posed (see [5,6,4]). The idea developed in such frameworks is to allow
the asking agent, while waiting for slave agents to reply, to reason using
default belief until replies are sent.

In [6] in particular, a framework is proposed, that allows an agent not
only to perform speculative computation but also to accept iterative an-
swer revision, in the case of yes/no questions. In this paper, we present an
extension of the framework in the case of more general types of questions
using constraint logic programming (CLP).

1 Introduction

Multi-agent systems are very fashionable and convenient, for they make it pos-
sible, for instance, to take advantage of multi-processor machines, and for they
also make it possible to design human-like efficient organizations of agents. The
main limitation to such an approach is that, as arises in human organizations,
communication may be an issue: delayed or broken, it leads to incompleteness
of the information in the reasoning structure.

This is a concrete concern when we consider distributed systems such as
the Internet, in which communication is indeed not guaranteed, and even if we
could guarantee it, communication may either take time, or agents themselves
may delay their sending information.

In the case of such unideal, but as we believe, practical situations, when
problem-solving is at stake, frameworks for speculative computations were pro-
posed: first for yes/no questions only [5], and then for general questions [4] using
constraints.

In [5] and [4], they only provide the possibility for the master agent to per-
form speculations and a returned answer from the slave agent is final and there
is no possibility of change of answers. However, if we let every agent perform
speculative computation, the asked agent may revise his answer since the pre-
vious answer sometimes depends on the asked agent’s belief, which might turn



out to be false. Therefore, a chain reaction of belief revision among agents might
occur which was firstly observed in [6], and Satoh and Yamamoto provide a re-
visable speculative computation method for yes/no questions. Essential part of
their work is a dynamic iterative belief revision mechanism which can handle a
revision of an answer for query even during the execution.

Belief revision is indeed very important for both the sake of flexibility (in-
formation is processed before it is complete), and speed of computation (time is
saved in case prior information is later entailed).

In this paper, we combine the methods proposed in [4] and [6], and ex-
tend them, so that we can handle iterative answer revision for a query with
constraints. We also complete these methods with the ability to corporate dis-
junctive answers. So, the main contribution of this paper is the definition of
a framework that enables to perform speculative computations on constraints
while handling belief revision, and that handles as well disjunctive answers. In
particular, the main challenges dealt with in this work are the following.

— First, processing speculative constraints, as shown in [4], is manageable when
belief revision is not considered. In this paper, belief revision is made possi-
ble because it enables more speculative computation in multi-agent systems.
This hardens the problem a lot: the process management needs to be modi-
fied so as to enable changes in the computation at any time, while maintain-
ing a reasonable balance between not being too much space-consuming, and
not loosing too much time (i.e., we don’t want to start from scratch all the
time). The process management is presented in detail in this paper, as well
as results on the space complexity of our operational model.

— The second challenging point described in this paper is the way disjunction
is now handled in the framework we propose. Indeed, considering the situ-
ation where each agent’s behavior is specified as a CLP program, we need
to handle alternative answers, since these answers may come from differ-
ent derivations in CLP. By manipulating such alternative answers, we face
another complication, in that we need to distinguish a revised answer of
a previous answer, from an answer derived from an alternative derivation
path®. To solve this problem, we devise an answer entry which keeps track
of the usage status of the answer in processes. This new feature impacts the
way processes are managed, as described in Section 3, and therefore makes
the problem more complicated.

For an iterative belief revision, many proposals have been described. As far as
we know, existing frameworks separate reasoning and belief revision, except [5,
6,4]. And this work is along the line of the works of Satoh et al. in a more general
setting.

There are works on a formalization of an agent in terms of logic programming
such as [3]. Although these research are important in their own right, our paper

3 Indeed, in particular, a contradictory answer should be considered as contradictory
only if it is a revision of a former answer, not if it is an alternative answer.
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pursues another branch of investigation in the context of speculative computa-
tion.

Most related research would be constraint programming language such as
AKL(Andorra Kernel Language) [2] and Oz [7] which perform a kind of spec-
ulative computation. AKL allows local speculative variable bindings in a guard
of each clauses until one of guards is succeeded and Oz can control multiple
computation spaces each of which represents alternative path of constraint pro-
cessing. As far as we understand, however, speculative computation used in these
languages are mainly motivated for or-parallel computing where all alternative
paths of computation are executed in parallel until one of paths are succeeded
eventually. On the other hand, we regard a speculative computation as a default
computation where most plausible paths of computation are executed. Moreover,
they do not consider any revision of the answers.

The structure of the paper is as follows. We firstly define a framework for
speculative constraint processing and a semantics of the framework. Then, we
describe an operational model and show an example of execution and state
correctness of our model. Finally, we discuss space complexity issues, before to
conclude.

2 Speculative Constraint Processing

In this section, we provide a framework of speculative constraint computation
based on the CLP framework [1]. This framework is designed so that an agent not
only performs speculative constraint processing but also accepts revised answers
and alternative answers. We then define a semantics of this framework, in Sub-
section 2.2.

2.1 Framework Definition

Definition 1. Let X be a finite set of constants. We call an element in X a
slave agent identifier. An atom is of the form either p(t1,...,tn) or p(t1, ..., t,)QS
where p is a predicate, t;(1 < i< n) is a term, and S is in X.

We call an atom with an agent identifier an “askable atom”, and an atom without
an identifier a “non-askable atom”.

Definition 2. A framework for speculative constraint computation, in a master-
slave system is a triple (X, A, P) where:

— X is a finite set of constants;
— A is a set of rules of the following form called default rule w.r.t. QQS':

Qas — c|.

where QQS' is an askable atom, each of whose arguments is a variable, and
C is a set of constraints, called default constraint for QQ.S;
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— P is a constraint logic program, that is, a set of rules of the form:
H — CHBl, BQ, ceny Bn

where:
e H is a non-askable atom; we refer to H as the head of R denoted as
head(R);
o C is a set of constraints, called the constraint of R, and denoted as
const(R);
e cach B; of Bi,..., By, is either an askable atom or a non-askable atom,
and we refer to By, ..., By as the body of R denoted as body(R).

Note that a default is not necessarily specified for every askable atom. Moreover,
we allow multiple defaults for the same askable atom.

Ezample 1. We consider the following example of hotel room reservation. There
is a master agent m: m asks travellers a and b. If both travel, m reserves a twin
room. If one of them travels, m reserves a single room. Agent m has default
information about the status of a and b for days 1, 2 and 3, but the real status
will be obtained directly from a and b, and the status is therefore likely to be
changed.

This example can be represented as the following multi-agent system (X, A, P)*:

— X is the set of slave agents. Here, there is one master agent, m, and two
slave agents, a and b. Therefore X' = {a, b}.

— A is the set of default information (default rules), assumed by the master
agent. In particular, let us suppose that m assume that a is free on days 1,
and 2, and busy on day 3, and that b is free on day 2, and busy on day 1.
Then the corresponding set A is as follows:

A={dy: fr(D)@Qa—D=1]|.,
dy: fr(D)Qa—D=2|., d3: bs(D)Qa—D=3|.,
dy: fr(D)@b—D=2|., ds: bs(D)@b—D=1].}
Let us remark that it is not necessary that a default information exist for
all cases. In particular, m has no default information concerning the status
of b on day 3.

— P is a constraint logic program, to be solved by agent m. In our case of hotel
room reservation with two travelers, it is made of the following set of rules:
rsv(R, L, D) «— R=tr, L=[a,b]| fr(D)Qa, fr(D)Qb.
rsv(R, L, D) «— R=sr, L=[a]||fr(D)Qa, bs(D)Qb.
rsv(R, L, D) «— R=sr, L=[b]||bs(D)Qa, fr(D)Qb.
In order to solve this constraint satisfaction problem, agent m will have to
ask agents a and b about fr(D)Q@a, bs(D)Qa, fr(D)Qb, bs(D)Qb.

4 A string beginning with an upper case letter represents a variable and a string
beginning with a lower case letter represents a constant. We abbreviate “free” as
fr, “busy” as bs, “travel” as trvl, “reserve” as rsv, “twin room” as tr, and “single
room” as sr.
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2.2 Semantics of Speculative Constraint Processing

For a semantics of the above framework, we index the semantics of constraint
logic program by a reply set which specifies a reply for an askable atom.

Definition 3. A reply set is a set of rules of the form:
Qas — C|,

where QQS is an askable atom, each of whose arguments is a variable, and C' is
a constraint over these variables.

Let (X, A, P) be a framework for speculative constraint computation, and R
be a reply set. A belief state w.r.t. R and A is a reply set defined as:

RU{“QQS — C|’e A | -3 C st. “QAS — C'||” e R}
and denoted as BEL(R, A).

We introduce the above belief state, since if the answer is not returned, we use
a default rule for an unreplied askable atom.

Definition 4. A goal is of the form «— C||Bu,..., B,, where C is a set of con-
straints and B;’s are atoms. We call C the constraint of the goal and By, ..., By,
the body of the goal.

Definition 5. A reduction of a goal «— C||By,..., B, w.r.t. a constraint logic
program P, a reply set R and an atom B;, is a goal «— C'||B’ such that:

— there is a rule R in PUR s.t. C A\ (B; = head(R)) Aconst(R) is consistent’.
— C" = C A (B; = head(R)) A const(R)
— B = {Bl, ...Bi,h Bi+1, ceey Bn} U bOdy(R)

Definition 6. A derivation of a goal G =— C||Bs w.r.t. a framework for spec-
ulative constraint computation F = (X, A, P) and a reply set R is a sequence of
reductions “— C||Bs”,..., “— C"|0”% w.r.t. P and BEL(R, A) where in each re-
duction step, an atom in the body of the goal in each step is selected. C' is called
an answer constraint w.r.t. G, F and R. We call a set of all answer constraints
w.r.t. G, F and R the semantics of G w.r.t. F and R.

In the above definition, we only consider the most recent reply set, whereas a
reply set might be varied during execution according to the slave agent’s answer
revision. We use the most recent reply set because it reflects the current situation
of the slave agents.

5 A notation B; = head(R) represents a conjunction of constraints equating the argu-

ments of atoms B; and head(R).
5 () denotes an empty goal.
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3 An Operational Model for Speculative Computation
with Iterative Answer Revision

3.1 Overview of Operational Model

The execution of the speculative framework is based on two phases, a process
reduction phase and a fact arrival phase. The process reduction phase is a nor-
mal execution of a program in a master agent, and the fact arrival phase is an
interruption phase when an answer arrives from a slave agent.

For the operational model, we use the following two kinds of objects: a process
and an answer entry.

Each process represents an alternative way of computation. Processes are
created when a choice point of computation is encountered, such as case splitting,
default handling and answer arrival. A process becomes a finished process when
the body of the associated goal with the process becomes empty. A process fails
when some used default constraints are found to contradict the newly returned
answer.

An answer entry is used to distinguish alternative answers and to detect
which old answer corresponds to the newly revised answer. This detection is
done by attaching an ID to each answer. If a new answer with an ID differ-
ent from any existing answer comes, it is an alternative answer. Otherwise, the
new answer is considered as a revised answer for the old answer with the same ID.

Figures 1~4 intuitively explain how processes are updated according to ask-
able atoms. In the tree, each node represents a process, but we only show con-
straints associated with the process. The top node represents a constraint for
the original process, and the other nodes represent added constraints for the re-
duced processes. The leaves of the process tree represent the current processes.
Therefore, the processes which are not in the leaves are deleted processes.

Fig. 1 shows a situation of the processes represented as a tree when an askable
atom, whose reply has not arrived yet, is executed in the process reduction phase.
In this case, the current process, represented by the processed constraints C, is
splitted into two different kinds of processes: the first one is a process using
default information, Cy, and is called default process ”; and the other one is the
current process C itself, called original process, suspended at this point.

C

S

true
Ca suspended

Fig. 1. When QQS is processed, during the process reduction phase

Note that, if there are multiple definitions of defaults, we will have more than
one default process, but still only one suspended process. In addition, let us note

7 In this figure, we assume that there is only one default for brevity.
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that the reason for suspending processes (which is, keeping them in memory),
is that in case of a contradictory revision of the default, or later alternative an-
swers coming, it is essential to keep memory of the original processes to be able
to restore them.

When, after some reduction of the default processes (represented on Fig. 2
by dashed lines), the first answer comes from a slave agent, expressing constraint
Cy for this askable literal, we update default processes as well as the original
suspended process as follows:

— Default process(es) are reduced into two different kinds of processes: the first
kind is a process adding C to the problem to solve, and the other is the
current process itself which is suspended at this point®.

— The original process is reduced into two different kinds of processes as well:
the first kind is a process adding =Cy4 A C, and the other is the original
process, suspended at this point.

Let us remark that although the tree of processes grows, only leaves are kept in

memory.

true
true true CrA=Cy true
suspended suspended suspended

Fig. 2. When the first answer Cy for Q@S arrives

To explain the correctness of the above process update intuitively, we define
a frontier which represents the computation status of all alternative derivations.
A frontier w.r.t. a goal — C||Bs, a framework for speculative constraint compu-
tation (X, A, P) and a reply set R, is a set of goals defined as follows.

1. The set consisting of the initial goal, {< C||Bs} is a frontier.
2. Let F be a frontier w.r.t. the above initial goal, the framework and the reply

set. If a goal G is in F', B is an atom in G, and RGs = {G’| G’ is a reduction
of G wr.t. P, BEL(R,A) and B}, then F\{G} U RGs is a frontier.

Then we have the following properties.

Lemma 1. Let «— C||Bs be a goal, F be a frontier of this goal, and C’ be a
constraint. If we add C' to the constraints of every goal in F, then the disjunc-
tions of all answer constraints of these modified goals is logically equivalent to
the disjunction of all answer constraints of the goal — C N C'||Bs.

8 Let us remark that this splitting process is similar to the splitting process above-
described for the case of a first default used.
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Lemma 2. Let — C||Bs be a goal, R be a reply set, and C' be a constraint.
Then, the disjunction of answer constraints of — C AC'||Bs and — C AN—C"||Bs
is logically equivalent to the disjunction of all answer constraints of — C||Bs.

Let «— C||Bs be a goal containing QQS, suppose that it is reduced into
— C A Cy||Bs\{Q@S} by a default rule “Q@QS « Cy||”. Let F be a frontier of
— CACq||Bs\{QQ@S} when the first reply “Q@S « C¢||” is returned. Since our
semantics considers the most recent replies, at this point, we should consider:

— CNCyl|Bs\{Q@S}

instead of:

— C A Cy||Bs\{Q@S}.

One possibility to implement this change is that we just discard F' and invoke a
new goal «— C' A Cy||Bs\{QQ@S}. However, in this case, we throw every compu-
tation away before F' is obtained. To retain the previous computation as much
as possible, we propose the following execution.

1. We add Cy to the constraint of every goal in F.
Let us remark that the disjunction of all answer constraints from this new
frontier is logically equivalent to the disjunction of all answer constraints of
— CNCqNCy||Bs\{QQS} as Lemma 1 states. This computation keeps the
previous computation which is consistent with the new reply (Cy).

2. In addition to the above computation, we also start computing a new goal:
— C AN=Cq A Cr||Bs\{Q@S}

to guarantee completeness. It is because the disjunction of all answer con-
straints derived from «— C A Cq A C¢||Bs\{Q@S} and «— C A =Cq A
Cr||Bs\{QQ@S?} is logically equivalent to the disjunction of all answer con-
straints derived from «— C' A C¢||Bs\{Q@S} as Lemma 2 states.

When an alternative answer, with the constraint C,, comes from a slave
agent (as shown on Fig. 3), we need to follow the same procedure as when the
first answer comes (cf. Fig. 2), except that now the processes handling only
default information are suspended. So, this is done by splitting the suspended
default process(es), in order to obtain the answer constraints which are logically
equivalent to the answer constraints of:

— O NCy AC,|Bs\{Qas},

as well as by splitting the suspended original process, in order to obtain the
answer constraints which are logically equivalent to the answer constraints of
— C A-Cyq A C,||Bs\{QQS} (Fig. 3). By gathering these answer constraints,
we can compute all answer constraints for the alternative reply.
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‘Cf true Cy  true Cy ‘/\ —Cu true
L
f A
‘... P ...
C, true C, true CoN—Cy  true
suspended suspended suspended

Fig. 3. When the alternative answer C, for QQS arrives

On the other hand, when a revised answer, with the constraint C,., comes,
all processes using the first (or current) answer are splitted, in order to obtain
the answer constraints which are logically equivalent to the answer constraints

of:
— C ACy NCr||Bs\{QQS},

and the suspended original process is splitted as well, in order to obtain the
answer constraints which are logically equivalent to the answer constraints of
— C AN=Cy ACr||Bs\{QQS} (Fig. 4). By gathering these answer constraints,

we can override the previous reply by the revised reply.

C
Cy true
/' “
l, ‘\
Cy  true Gy true Cf‘/\ = Cq true
/A‘ suspended R suspended L™
c. C, c. G, C, C,  C.N-Cf sustgé%%e d

Fig. 4. When the revised answer C, for QQS arrives

3.2 Preliminary Definitions
A process is either an ordinary process or a finished process. An ordinary process
P is an expression of the form (PID,C,GS, WA, AA) where:

— PID: the ID for a process denoted as pid(P);
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C': the current constraint in the goal denoted as pconst(P);

— GS: the body in the goal denoted as gs(P);

— W A: aset of pairs (QQS, W AI D) where Q@S is an askable atom and W AI D
is the ID of an answer entry whose answer is waited for by the process. We
denote WA as wa(P).

— AA: aset of pairs (QQS, AAID) where Q@S is an askable atom and AAID

is the ID of an answer entry whose answer is used in the process. We denote

AA as aa(P).

A finished process FP is an expression of the form (Query, FPID,C) where:

— Query: an initial query for this process. It is used to send an answer to the
asking agent;

— FPID: the ID for a process. This is also used when this answer is returned
to the asking agent;

— (' the current constraint in the process.

For simplicity, an ordinary process is sometimes just called a process.

An answer entry A is an expression of the form (QQS, AID,C,UPIDs) where:

— QQS: the query given to the other agent denoted as aq(A);

— AID: the ID for an answer entry denoted as aid(A). We have the special
IDs, “0” for the answer entry created when this query is firstly asked, and
“dy,...” for default answers. We call an answer entry with the ID “0” an
original answer entry for QQS, an answer entry with an ID of “dy,...” a
default answer entry, and other answer entries ordinary answer entries;

— (' the most recent answer constraint for Q@S for answer entry A denoted
as aconst(A). The constraint of the original answer entry is defined as true;

— UPIDes: the set of IDs of processes using an answer in A denoted as ups(A).

3.3 Process Reduction Phase

In the process reduction phase, we process the constraints we have, in a regular
CP way. The only difference is that we may have to consider default information,
or answers. In this subsection, we describe how we manage processes, following
the above-given definitions.

We do the following until no more process can be processed.

— When a query Qinit@Sses is asked from another agent S’ where Sse; s is the
ID for this agent, we record Q;,;; as the initial query and S’ as the asking
agent. We then create a new process (PID,{}, Qinit, {},{}) where PID is
a new process ID.

— If there is an ordinary process P such that gs(P) = wa(P) = 0,

1. Send an answer to the asking agent S’ which is of the form:
(QinitQSserp, pid(P), pconst(P)).

2. We change this process into a finished process of the form:

<Qinit@sself7pid(P)7pconSt(P)>'
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— Else if there is a process P such that gs(P) # 0 and wa(P) = 0, then we
select an atom L in gs(P) and reduce L as follows.
e If L is a non-askable atom,
1. For every rule R such that pconst(P) A (L = head(R)) A const(R) is
consistent, we do the following;:
(a) We create the following process
(newPID,newC,GS,{}, AA) where
* newPID is a new process ID;
* newC := pconst(P) A (L = head(R)) A const(R);
* GS :=body(R) U gs(P)\{L};
* AA := aa(P).
(b) For every answer entry A s.t. (ag(A),aid(A)) in aa(P),
ups(A) := ups(A) U {newPID}.
2. For every answer entry A s.t. (ag(A),aid(A)) in aa(P),
ups(A) = ups(A)\{pid(P)}.
3. We delete P.
e If L is an askable atom QQS,
1. We do either of the following according to non-arrival/arrival of the
answer.
* If there is no ordinary answer entry of the form
(QQ@S, AID,C,UPIDs), then for each default “QQS «— Cyl|.”
such that pconst(P) A Cyq is consistent, we do the following:
(a) We create a new process
(newPID,newC,GS,{}, AA) where
- newPID is a new process ID.
- newC := pconst(P) A Cq4
. GS = gs(P)\{QaS}
- AA = aa(P)U{{(QQS, d)} where d is an ID for this default.
(b) We associate the newly created process with a default d of
QQS as follows.
- If there is a default answer entry A, = (QQS, d, Cy, UPIDs,),
then ups(Aq) := UPIDsq U {newPID}.
- Else if there is no default answer of the form
(QQS,d,Cy,UPIDsg), we create the answer entry
(QQS, d,Cy, {newPID}).
(c) For every answer entry A s.t. {(ag(A), aid(A)) in aa(P),
ups(A) = ups(A) U {newPID}.
* Else if there exists an ordinary answer entry of the form
(QQS, AID,C,UPIDs), then for each ordinary answer entry
(QQS, AID, C,,UPIDs) s.t. pconst(P)AC,, is consistent, we do
the following:
(a) We create a new process
(newPID,newC,GS,{}, AA) where
- newPID is a new process ID.
- newC := pconst(P) A C,
-GS = GS\{Qas}
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- AA = aa(P)U{(QQS, AID)}.
(b) For every answer entry A s.t. (ag(A),aid(A))in aa(P),
ups(A) = ups(A) U {pid(P)}.
2. We associate P with Q@S as follows.
x If there is an original answer entry A, = (QQS, o, true, UPIDs,),
then ups(A,) :== UPIDs, U {pid(P)}.
* Else if there is no original answer entry of the form
(QQS, o, true, U PIDs), we create an answer entry
(QQS, o, true, {pid(P)}), and send a question @ to S.
3. wa(P) := {{QQS, o)}

3.4 Fact Arrival Phase

Suppose that an answer is returned from an agent S for a question Q@S of
the form (Q@S, AID,C). Then, we do the following after one step of process
reduction is finished.

— If there is no answer entry of the form (Q@S, AID,C;, UPIDs')°,

1. We create an answer entry (Q@QS, AID, C,UPIDs) where UPIDs is set
to () initially, but will be incremented as shown below.

2. For every default answer entry for a default d of the form
(QQS,d,Cy,UPIDsg) and for every process P; such that pid(P;) €
UPIDsg, we do the following;:

o If P, is a finished process of the form (Qinit@Sseif, PID, Crinar) s.t.
CACFinal # Crinal, we send an answer of the form (Qinit @Sseir, PID, CA
Crinal) to the asking agent S
e If P; is an ordinary process,
(a) wa(Py) := wa(Py) U {(QQS,d)}
(b) aa(Py) i= aa(P)\{(QOS, d)}
(c) If C A pconst(Py) is consistent, we do the following.
i. We create the following process
(newPID,newC,GS,WA, AA) where
newPID is a new process ID.
newC := C A pconst(Py)
GS = gs(Pa).
WA = wa(Py)
AA=aa(Py) U{(QOS, ATD)\{(QGS, d))
ii. UPIDs:=UPIDsU {newPID}.
3. Pick up the original answer entry of the form (QQS, o, true,UPIDs,).
4. For every process P, such that pid(P,) € UPIDs, and C Apconst(P,)A

A@as—c,|yea Ca is consistent, do the following:

(a) We create the following process
(newPID,newC,GS,WA, AA) where

e newPID is a new process ID.

* K X X X

9 This means that the arriving answer is an alternative answer to the query Q@S.
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newC::C/\pconst(Po)/\/\(Q@SHcdH)GA -Cy
GS = gs(P,).

WA := wa(P,)\{{QQS,0)}

AA :=aa(P,) U {{QQS, AID)}

(b) UPIDs :=UPIDsU {newPID}.

— Else if there is an answer entry of the form (QQS, AID,Cy,UPIDs')1°

1. We change (QQS, AID,Cy,UPIDs') into (QQS, AID, C,UPIDs) where

UPIDs := UPIDs' initially but will be incremented/decremented as
shown below.

2. For every process P such that pid(P) € UPIDs’ do the following:

o If P is a finished process of the form (Qinit@QSserf, PID, Crinal) s.t.
C A Crinal # CFinal, we send an answer of the form
(QinitQSseir, PID,C' A Cpinai) to the asking agent S’.
e If P is an ordinary process,
* If C' A peonst(P) is consistent,
peonst(P) := C A pconst(P).
* Otherwise, delete P and
UPIDs := UPIDs\{pid(P)}.

3. Pick up the original answer entry of the form (Q@QS, o, true, UPIDs,).
4. For every process P, such that pid(P,) € UPIDs, and C Apconst(P,) A

—C} is consistent, we do the following:

(a) We create the following process
(newPID,newC,GS,WA, AA) where

newPID is a new process ID.

newC = C' A pconst(P,) A =Cy

GS = gs(P,).

WA := wa(P,)\{{QQS, o)}

AA = aa(P,) U{{(QQS, AID)}

(b) UPIDs:=UPIDsU {newPID}.

3.5 Execution Trace Example

We show a part of an execution trace for a question rsv(R, L, D) in Example 1. In
this trace, we consider a scenario which highlights process updates upon arrivals
of an alternative answer and revised answer. We firstly give the initial process

<p0a {}v {’I”S’U(R, Lv D)}7 {}7 {}>

1.

Select process pg and reduce it to p1,p2, ps3.
Processes:

<p1,{R:t7", L= [aa b}}’ {fT(D)@av fT(D)@b}v{}’{}>’
<p2,{R:ST, L= [CL]}, {fr(D)@a, bS(D)@b}a{}7{}>7
(ps,{R=sr,L=[b]},{bs(D)Qa, fr(D)ab}{}{})

10 This means that the arriving answer is a revised answer of one of the previous answer

to the query Q@QS.
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2. Select p1, and ask a question fr(D)Qa, and create answer entries for
fr(D)Qa and new processes p4, ps for default answers.
Answer entries:
(fr(D)@a, 0, true, {pl}>7
(fr(D)@a, di, {D = 1}7 {p4}>’
(fr(D)Qa,ds,{D = 2},{ps})
Processes: pa, p3,
(pa, 0 U{D = 1}, {fr(D)@b}, {},{(fr(D)Qa,d1)})
<p5a etr ) {D = 2}7 {fT(D)@b}a {}a {<f1“(D)@a, d2>}>
(p1, Oer, { fr(D)@b}, {(fr(D)Qa,0)},{})

3. Suppose that (fr(d)Qa,ai,{D =2}) is returned from the agent a. We sus-
pend p4 and ps since they use a default answer and then create new processes
pe from p5 since the default answer used in p5 is consistent with the returned
answer. Note that we create no new process from p; since the returned an-
swer contradicts one of negations of default answers.

Answer entries: fra,, fraq,, fraq,2,
(fr(D)@Qa,a1,{D = 2},{ps})

Processes: p1, p2, p3,

(6, Orr2, { fr(D)QbY, {}, {(fr(D)Qa, a1)}),
(pa, Orr1, { fr(D)@b}, {{fr(D)Qa,d1)},{}),
(p5, Our2, { fr(D)@b}, {(fr(D)Qa, d2)}, {})*?

4. Suppose that (fr(D)Qa,az, {D = 3}) is returned from the agent a. Since
this has the different answer ID from the previous answer in the last step,
this answer is an alternative answer. Then, we create a new process from p;
which is the original process for query fr(D)@a. Note that we create no new
process from the processes created by default answers for fr(D)@a since this
answer contradicts the defaults.

Answer entries: fra,, fraq,, frad,, fraq 4,
(fr(D)Qa,az,{D = 3},{pr})
Processes: p1, p2, p3, P4, D5, D
(p7,01, U{D =3,D #1,D # 2}, {fr(D)ab}, {}, {(fr(D)Qa, a2)})

5. Suppose that (fr(D)Qa,aq,{D = 1}) is returned from the agent a. The ID
aq for the returned answer indicates that this answer is a revised answer for
“D = 27. Therefore, we revise every process using a1 which is recorded in the
answer entry fra,,. This is pg, but its associated constraint is contradictory
with the returned answer, and therefore we Kkill this process. Then, we create
a new process pg from pj.

11
)
)

Y9, ={R=tr,L =a,b]}.
12 fra, = (fr(D)Qa, o, true, {p1}),
frad1 = <fT(D)@a7 di, {D = 1}7 {p4}>7
fraq, = (fr(D)Qa,d2,{D = 2}, {ps}).
13 9”2 = 9” @] {D = 2} and 9)57«1 = 9” @] {D = 1}
" fra’al = (fr(D)@m ai, {D = 2}7 {p6}>'
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Answer entries: fra,, fraq,, frad,, fraq,®,

(fr(D)Qa, a1, {D =1}, {ps})
Processes: p1, p2, ps, pa, Ps, P7,
<pSa etr U {D = 1a D 7é 2}v {fT(D)@b}v {}7 {<fr(D)@av a1>}>

4 Correctness of the Operational Model

We guarantee that the above operational model gives a correct answer w.r.t. the
most recent replies. Let us note that we assume that the order of reply messages
is preserved.

Theorem 1. Let (X, A, P) be a framework for speculative constraint computa-
tion. Suppose that there is an ordinary process P such that gs(P) = wa(P) =0
for the initial query Qinqt. Let

R ={“QQS «— C|” | there exists an answer entry (QQS, AID,C,UPIDs)
s.t. (QQS, AID) € aa(P)}.

Then, there exists an answer constraint C' w.r.t. Qinis, the framework and R
s.t. wy (pconst(P)) entails my (C'), where V is the set of the variables that occur
n Qinit, and my is the projection of constraints onto V.

5 Space complexity of our approach

Our approach, compared to traditional approaches (no belief revision), generates

an additional cost in terms of space. In this section, we briefly show that the

additional cost in space is linear. This cost is observed based on the size of the

set PS of processes related to the revised or alternative answer to handle.
When a revised answer comes, say C, as shown in Fig. 4:

— if ;. entails the previous answer, say Cy, PS either remains the same size,
or reduces (because some processes in PS may now have inconsistent con-
straints and therefore be killed);

— if C, is inconsistent with C'¢, then all the processes using Cy in P.S are killed,
the original suspended processes are duplicated and resumed with C,., and
therefore PS grows by at most the number of original suspended processes;

— if () is consistent with Cy but does not entail it, PS grows by at most the
number of original suspended processes.

These three cases exhibit only linear (or less) behavior.

When an alternative answer comes, say C,, as shown in Fig. 3, all the sus-
pended processes created on the arrival of the first answer, as well as the original
suspended processes, are duplicated and resumed with C,. Therefore, PS grows
by at most the number of these suspended processes.

As briefly covered here, the growth of the set of processes on the arrival of
revised and alternative answers follows a linear behavior.

o fraa, = (fr(D)@m az, {D = 3}7 {p7}>'
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6 Conclusion

In this paper, we presented an operational model for speculative constraint pro-
cessing with iterative revision for alternative answers. This paper is a general-
ization of two previous works; the work of revisable speculative computation for
yes/no questions [6] and the work of non-revisable speculative computation for
queries with constraints [4].

As future work, we will prove correctness and completeness for more general
forms of multi-agent systems, where every agent can perform speculative compu-
tation. Our current framework is focused on master-slave multi-agent systems,
and defines the operational model of master agents. To handle a more general
multi-agent system, we need to guarantee the appropriate computation of the
overall system by additionally considering communication paths among agents.
As another direction, we will also consider applications for this framework.
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Abstract. In this paper, we consider the design of normative multiagent systems
composed of both constitutive and regulative norms. We analyze the properties
of constitutive norms, in particular their lack of reflexivity, and the trade-off be-
tween constitutive and regulative norms in the design of normative systems. As
methodology we use the metaphor of describing social entities as agents and of
attributing them mental attitudes. In this agent metaphor, regulative norms ex-
pressing obligations and permissions are modelled as goals of social entities, and
constitutive norms expressing “counts-as” relations are their beliefs.

1 Introduction

Legal systems are often modelled using regulative norms, like obligations and permis-
sions [1]. However, a large part of the legal code does not contain prohibitions and
permissions, but definitions for classifying the commonsense world under legal cat-
egories, like contract, money, property, marriage. Regulative norms can refer to this
legal classification of reality.

Consider the consequences for the design of legal systems. For example, in [2]
we address the issue of designing obligations to achieve the objectives of the legal
system. However, the problem has not been studied of how to design legal systems
composed of both constitutive and regulative norms. For modelling constitutive norms,
specialized formalisms for counts-as conditionals have been introduced [3-5], but it
remains unclear how to relate them to regulative norms. In contrast, as atrtais|3]
argue, for constitutive norms to be norms it is necessary that “their conditional nature
exhibits some basic properties enjoyed by the usual normative links”.

Obligations, prohibitions and permissions have a conditional nature. Their condi-
tions could directly refer to entities and facts of the commonsense world, but they can
rather refer to a legal and more abstract classification of the world, making them more
independent from the commonsense view. E.g., they refer to money instead of paper
sheets, to properties instead of houses and fields. This more natural and economical
way to model the relation between commonsense reality and legal reality uses “count-
as” conditionals, and allows regulative norms to refer to the legal classification of re-
ality. In this way, e.g., it is not necessary that each regulative norm refers to all the
conditions involved in the classification of paper as money or of houses and fields as
properties. Moreover, it is not necessary that regulative norms manage the exceptions in



the classification, e.g., that a fake bill is not money or that some field is not considered
as a property. Finally, by referring to the legal classification of reality only, regulative
norms are not sensitive anymore to changes in the classification: a new bill can be in-
troduced without changing the regulative norms concerning money, or a new form of
property or a new kind of marriage can be introduced without changing the relevant
norms.

However, the trade-off and equivalences between systems made purely of regulative
norms and those including also constitutive norms cannot be easily captured by special-
ized formalisms. They either consider only regulative norms, such as deontic logic, or
only constitutive norms, such as logics of counts-as conditionals, or, finally, with for-
malisms using very different formalizations for modelling the two kinds of norms.

In [6], to model social reality, we have introduced constitutive norms in our norma-
tive multiagent systems. In this paper we use normative multiagent systems to model
the design of legal systems. In particular, the research questions of this paper are: What
properties have constitutive norms? In [6] we use rules satisfying the identity property,
thus making the “counts-as” relation reflexive. This is a undesired property if constitu-
tive norms provide a classification of reality in term of legal categories. In this paper
we remedy this by modelling “counts-as” as input/output conditionals. This is an alter-
native solution with respect to the one proposed by Arsil. [3]. Secondly, how can
regulative and constitutive norms be traded-off against each other in the design of legal
systems? If we replace constitutive norms in a legal system with regulative ones, then
we loose the abstraction provided by legal classification.

The main advantage of our approach in comparison with other accounts, is that we
combine constitutive and regulative norms in a single conceptual model. As method-
ology we use our model of normative multiagent systems introduced in Al and agent
theory to model social reality and agent organizations [7]. The basic assumptions of
our model are that beliefs, goals and desires of an agent are represented by conditional
rules, and that, when an agent takes a decision, it recursively models [8] the other agents
interfering with it in order to predict their reaction to its decision as in a game. Most
importantly, the normative system itself can be conceptualized as an agent with whom it
is possible to play games to understand what will be its reaction to the agent’s decision:
to consider its behavior as a violation and to sanction it. In the model presented in [6],
regulative norms are represented by the goals of the normative system and constitutive
norms as its beliefs. In this paper we discuss how trade-off problem between constitu-
tive and regulative norms can be handled by as the trade-off between beliefs and goals
of the normative system. The cognitive motivations of the agent metaphor underlying
our framework are discussed in [9].

The paper is organized as follows. In Section 2 we describe the agent metaphor. In
Section 3 we introduce a logic which does not satisfy identity. In Section 4 we discuss
the relation between constitutive and regulative norms. In Section 5 we introduce a
formal model where we discuss the properties of constitutive norms and in Section 6
the trade-off with regulative ones. Comparison with related work and conclusion end
the paper.
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2 Attributing mental attitudes

We start with a well known definition:Normative systemare sets of agents (human

or artificial) whose interactions can fruitfully be regarded as norm-governed; the norms
prescribe how the agents ideally should and should not behave [...]. Importantly, the
norms allow for the possibility that actual behaviour may at times deviate from the
ideal, i.e. that violations of obligations, or of agents rights, may occur” [1].

This definition of Carmo and Jones does not seem to require that the normative
system is autonomous, or that its behavior is driven by beliefs and desires.

In [6] we use the agent metaphor which attributes mental attitudes to normative
systems in order to explain normative reasoning in autonomous agents. The normative
system is considered as an agent with whom the bearer of the norms plays a game.
Henceforth, we can call it the normative agent.

Our motivation for using the agent metaphor is inspired by the interpretation of
normative multiagentsystems as dynamic social orders. According to Castelfranchi
[10], a social order is a pattern of interactions among interfering agents “such that it
allows the satisfaction of the interests of some agent”. These interests can be a delegated
goal, a value that is good for everybody or for most of the members; for example, the
interest may be to avoid accidents. We say that agents attribute the mental attitude ‘goal’
to the normative system, because all or some of the agents have socially delegated goals
to the normative system; these goals are the content of the obligations regulating it.

Moreover, social order require®cial contro] “an incessant local (micro) activity
of its units” [10], aimed at restoring the regularities prescribed by norms. Thus, the
agents attribute to the normative system, besides goals, also the ability to autonomously
enforce the conformity of the agents to the norms, because a dynamic social order re-
quires a continuous activity for ensuring that the normative system’s goals are achieved.
To achieve the normative goal the normative system forms the subgoals to consider as
a violation the behavior not conform to it and to sanction violations.

Searle argues that there are two types of norms: “Some rules regulate antecedently
existing forms of behaviour. For example, the rules of polite table behaviour regulate
eating, but eating exists independently of these rules. Some rules, on the other hand,
do not merely regulate an antecedently existing activity called playing chess; they, as
it were, create the possibility of or define that activity. The activity of playing chess is
constituted by action in accordance with these rules. Chess has no existence apart from
these rules. The institutions of marriage, money, and promising are like the institutions
of baseball and chess in that they are systems of such constitutive rules or conventions”
([11], p. 131).

According to Searle, institutional facts like marriage, money and private property
emerge from an independent ontology of “brute” natural facts through constitutive
norms of the form “such and such an X counts as Y in context C" where X is any
object satisfying certain conditions and Y is a label that qualifies X as being something
of an entirely new sort. Examples of constitutive norms are “X counts as a presiding
official in a wedding ceremony”, “this bit of paper counts as a five euro bill” and “this
piece of land counts as somebody’s private property”.

In our model, we define constitutive norms in terms of the normative system'’s belief
rules and the institutional facts as the consequences of these beliefs rules.
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The propositions describing the world are distinguished in two categories: first, what
Searle calls “brute facts”: natural facts and events produced by the actions of the agents.
Second, “institutional facts”: a legal classification of brute facts; they belong only to
the beliefs of the normative system and have no direct counterpart in the world. Belief
rules connect beliefs representing the state of the world to other beliefs which are their
consequences. They have a conditional character and are represented in the same rule
based formalism as goals and desires. In the case of the normative system the belief
rules have as consequences not other beliefs about brute facts in the world (e.g., “if a
glass drops, it breaks”), but new legal, institutional facts whose existence is related only
to the normative system. These belief rules, moreover, can connect also institutional
facts to other institutional facts.

This type of belief rules express tleunts-agelations which are at the basis of
constitutive norms. It is important that belief rules have a conditional character, since
they must reflect the conditional nature of the counts-as relation as proposed by Searle:
“such and such an X counts as Y in context C".

A fact p counts as an institutional fagtin contextC' for normative systemrm
counts-asy(p, q | C), iff agentn believes thap A C hasq as a consequence.

We extend this approach advocated in [6] in two ways. First we give a logical anal-
ysis of counts-as, and we argue that it requires an identity free logic. Second we discuss
the trade-off between the two kinds of norms.

3 Input/output logic

A disadvantage of the approach in [6] is that given the reflexivity of counts-as we have
that “A counts as A”, which is in contrast with our intuition and with other approaches
(but see Section 7 for a discussion). In particular, since the counts-as relation classifies
brute facts in legal categories, a brute fact A cannot be also a legal category: they are
ontologically heterogeneous concepts, thus we keep them separate for the purpose of
legal classification.

We therefore want to use an identity free logic, for which we take a simplified
version of the input/output logics introduced in [12, 13]. In this section we explain how
it works. A rule set is a set of ordered paifs— ¢, whereP is a set of propositional
variables and; a propositional variable. For each such pair, the bé&tis thought
of as an input, representing some condition or situation, and the qimathought of
as an output, representing what the rule tells us to be believed, desirable, obligatory
or whatever in that situation. Makinson and van der Torre wiReg) to distinguish
input/output rules from conditionals defined in other logics, to emphasize the property
that input/output logic does not necessarily obey the identity rule. In this paper we do
not follow this convention.

In this paper, input and output are respectively a set of literals and a literal. We use
a simplified version of input/output logics, since it keeps the formal exposition simple
and it is sufficient for our purposes here. In Makinson and van der Torre’s input/output
logics, the input and output can be arbitrary propositional formulas, not just sets of
literals and literal as we do here. Consequently, in input/output logic there are additional
rules for conjunction of outputs and for weakening outputs.
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Definition 1 (Input/output logic).

Let X be a set of propositional variables, the set of literals built frdmwritten as
Lit(X), is X U {—-x | z € X}, and the set of rules built fronY, written as RulX) =
oLItX) o Lit(X), is the set of pairs of a set of literals built frofi and a literal built
from X, written as{ly,...,l,} — [. We also writd; A ... Al, — [ and whem =0
we write T — [. Moreover, forz € X we write~z for -z and~(—z) for z.

Moreover, letQ be a set of pointers to rules and D : Q — Rul(X) is a total
function from the pointers to the set of rules built frafm

LetS = MD(Q) be a set of rule§P, — ¢1,...,P, — g,}, and consider the
following proof rules strengthening of the input (SI), disjunction of the input (OR),
cumulative transitivity (CT) and Identity (Id) defined as follows:

p=r g PAITTPATGoT

A\
OR wCT - Id
PAGg—T p—or p—or p—p

The following output operators are defined as closure operators on the sging

the rules above.
outy: Sl (simple-minded outputjuts: SI+CT (simple-minded reusable output)
outo: SI+OR (basic output)  out4: SI+FOR+CT (basic reusable output)

Moreover, the following four throughput operators are defined as closure operators
on the setS. out]: out;+d (throughput) We writeout(Q) for any of these output
operations ancbut™(Q) for any of these throughput operations. We also wiite
out(Q, L) iff L — 1 € out(Q), andl € out™(Q, L) iff L — [ € out™(Q).

Example 1.Given M D(Q) = {a — =,z — z} the output ofQ containszt A a — z
using the ruleS1. Using also the”'T rule, the output containg — z. a — a follows
only if there is theld rule.

A technical reason to distinguish pointers from rules is to facilitate the description
of the priority ordering we introduce in the following definition.

The notorious contrary-to-duty paradoxes such as Chisholm’s and Forrester’s para-
dox have led to the use of constraints in input/output logics [13]. The strategy is to adapt
a technique that is well known in the logic of belief change - cut back the set of norms
to just below the threshold of making the current situation inconsistent.

In input/output logics under constraints, a set of mental attitudes and an input does
not have a set of propositions as output, but a set of set of propositions. We can infer
a set of propositions by for example taking the join (credulous) or meet (sceptical), or
something more complicated. Besides, we can adopt an output constraint (the output
has to be consistent) or an input/output constraint (the output has to be consistent with
the input). In this paper we only consider the input/output constraints. The following
definition is inspired by [14] where we extend constraints with priorities:

Definition 2 (Constraints).

Let >: 29 x 29 be a transitive and reflexive partial relation on the powerset of
the pointers to rules containing at least the subset relation. Moreovesulebe an
input/output logic. We define:

— maz family(Q, P) is the set ofZ-maximal subset9’ of Q such thabut(Q’, P)U
P is consistent.
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— preffamily(@, P, >) is the set of>-maximal elements of preffam({y, P).

— outfamily@, P, >) is the output under the elements of maxfamily, i.e.,
{out(Q', P) | Q' € preffamily(Q, P, >)}.

— P — x € outy(Q, >) iff z € Uoutfamily(Q, P, >)
P — z € outn(Q, >) iff x € Noutfamily @, P, >)

In case of contrary to duty obligations, the input represents something which is
inalterably true, and an agent has to ask himself which rules (output) this input gives
rise to: even if the input should have not come true, an agent has to “make the best out
of the sad circumstances” [15].

Example 2.Let MD({a,b,c}) = {a = (T — m),b = (p — n),c = (0 — -m)},
{b,c} > {a,b} > {a,c}, where byA > B we mean as usual > B andB # A.
maz family(Q, {o}) = {{a, b}, {b, c}},

preffamily( @, {0}, >) = {{b,c}},

outfamily(@, {0}, >) = {{-m}}

The maxfamily includes the sets of applicable compatible pointers to rules together
with all non applicable ones: e.g., the output{ef ¢} in the context{o} is not con-
sistent. Finally{a} is not in maxfamily since it is not maximal, we can add the non
applicable ruleb. Thenpreffamilyis the preferred sefb, ¢} according to the ordering
on set of rules above. The smitfamilyis composed by the consequences of applying
the rules{b, c} which are applicable in (c): =m.

Due to space limitations we have to be brief on details with respect to input/output
logics, see [12, 13] for the semantics of input/output logics, further details on its proof
theory, its possible translation to modal logic, alternative constraints, and examples.

4 Constitutive norms vs regulative norms

Why are constitutive norms needed in a normative system? In [6], we argue that, first,
regulative norms are not categorical, but conditional: they specify all their applicabil-
ity conditions. In case of complex and rapidly evolving systems new situations arise
which should be considered in the conditions of the norms. Thus, new regulative norms
must be introduced each time the applicability conditions must be extended to include
new cases. In order to avoid changing existing norms or adding new ones, it would
be more economic that regulative norms could factor out particular cases and refer, in-
stead, to more abstract concepts only. Hence, the normative system should include some
mechanism to introduce new institutional categories of abstract entities for classifying
possible states of affairs. Norms could refer to this institutional classification of reality
rather than to the commonsense classification: changes to the conditions of the norms
would be reduced to changes to the institutional classification of reality. Second, the
dynamics of the social order which the normative system aims to achieve is due to the
evolution of the normative system over time, which introduces new norms, abrogates
outdated ones, and, as just noticed, changes its institutional classification of reality. So
the normative system must specify how the normative system itself can be changed
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by introducing new regulative norms and new institutional categories, and specify by
whom the changes can be done.

In this paper we discuss how constitutive norms, even if they can be replaced by
regulative norms, allow to create a level of abstraction to which regulative norms can
refer to, making to less sensitive to the changes in the legal system. The cons of intro-
ducing constitutive norms is that new rules are necessary, so that a trade-off must be
found between the need of abstraction and the complexity of the normative system.

As a running example, consider a society where the fact that a field has been fenced
by an agent counts as the fact that the field is property of that agent. In our model this
relation is expressed as a belief attributed to the normative system. The fence is a phys-
ical “brute” fact, while the fact that it is a property of someone is only an institutional
fact attributed to the beliefs of the normative system.

Assume now that the normative system has as goals that if a field is fenced, no one
enters it and that if a fenced field is entered, this action is considered as a violation
and the violation is sanctioned. These goals form an obligation not to trespass a fenced
field. However, the same legal system could have been designed in a different way
using the constitutive norm above: a fenced field counts as property. The constitutive
norm introduces the legal category of property which an obligation not to trespass a
property can refer to: it is obligatory not to trespass property. The two legal systems
are equivalent in the sense that in the same situation, the same violations hold; on the
other hand, they are different since the latter introduce a legal classification of reality;
thus, the obligation has as condition the institutional fact that the field is a property: the
field being a property is an institutional fact believed by the normative system, while
entering the field is a brute fact.

Analogously, in the purely regulative legal system, a permission to enter a fenced
field if it is close to a river could be added. This permission is an exception to the
obligation not to trespass fenced fields. In the second legal system, the same purpose
can be reached by adding a constitutive norm which states that a field close to the river,
albeit fenced, is not a property. Note that this is different from saying that a field on the
river is a property that can be trespassed, a fact which is expressed by a permission to
enter a property close to the river.

The possibility that institutional facts appear as conditions in the goals of the norma-
tive system or as goals themselves explains the following puzzling assertion of Searle
[16]: “constitutive rules constitute (and also regulate) an activity the existence of which
is logically dependent on the rules” (p.34). In our model constitutive norms regulate a
social activity since they create institutional facts that are conditions or objects of reg-
ulative norms. In our metaphorical mapping regulative norms are goals, and goals base
their applicability in a certain situation on the beliefs of the agent; in the previous exam-
ple, being a property indirectly regulates the behavior of agents, since entering a field
is a violation only if it is a property; if a field is not a property, the goal of considering
trespassing a violation does not apply.

Searle [16] interprets the creation institutional facts also in terms of what he calls
“status functions”: “the form of the assignment of the new status function can be rep-
resented by the formula ‘X counts as Y in C’. This formula gives us a powerful tool
for understanding the form of the creation of the institutional fact, because the form of
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the collective intentionality is to impose that status and its function, specified by the Y
term, on some phenomenon named by the X term”, p.46.

Where “the ascription of function ascrib&ése use to which we intentionally put
these objects” (p.20). In our model, this teleological aspect of the notion of function
depends on the fact that institutional facts make conditional goals relevant as they ap-
pear in the conditions of regulative norms or as goals themselves. The aim of fencing
a field is to prevent trespassing: the obligation defines the function of property, since
it is defined in terms of goals of the normative system. Hence, Searle’s assertion that
“the institutions [...] are systems of such constitutive rules” is partial: institutions are
systems where constitutive (i.e., beliefs) and regulative (i.e., goals) rules interacts. In
our model, they interplay in the same way as goals and beliefs do in agents.

5 The formal model

The definition of the agents is inspired by the rule based BOID architecture [17], though
in our theory, and in contrast to the BOID architecture, obligations are not taken as
primitive concepts. Beliefs, desires and goals are represented by conditional rules rather
then in a modal framework. We use in our model only goals rather than intentions since
we consider only on decision step instead of having plans for the future moves.

We assume that the base language contains boolean variables and logical connec-
tives. The variables are eithéecision variablesf an agent, which represent the agent’s
actions and whose truth value is directly determined by ipamameterswhich de-
scribe both the state of the world aimdtitutional facts and whose truth value can only
be determined indirectly. Our terminology is borrowed from Langl. [18].

Given the same set of mental attitudes, agents reason and act differently: when fac-
ing a conflict among their motivations and beliefs, different agents prefer to fulfill dif-
ferent goals and desires. We express these agent characteristics by a priority relation
on the mental attitudes which encode, as detailed in [17], how the agent resolves its
conflicts. The priority relation is defined on the powerset of the mental attitudes such
that a wide range of characteristics can be described, including social agents that take
the desires or goals of other agents into account. The priority relation contains at least
the subset-relation which expresses a kind of independence among the motivations.

Definition 3 (Agent set).An agent setis a tupled, X, B, D, G, AD, >), where:

— the agentsA, propositional variablesX, agent beliefs3, desiresD and goalsG
are five finite disjoint sets.

— B, D, G are sets of pointers to rules. We wrild = D U G for the motivations
defined as the union of the desires and goals.

— an agent descriptionlD : A — 2XYBUM jg g total function that maps each agent
to sets of variables (its decision variables), beliefs, desires and goals, but that does
not necessarily assign each variable to at least one agent. For each agem,
we write X, for X N AD(b), and B, for B N AD(b), Dy, for D N AD(b), etc. We
write parameters? = X \ Upea Xp.
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— apriority relation >: A — 2MYB x 9MUB ig g function from agents to a transitive
and reflexive partial relation on the powerset of the motivations containing at least
the subset relation. We write,, for > (b).

Since goals have priority over desires we have that give$! C M, forall a € A,
S >, 8ifS\S CGandS' '\ SCD.

Example 3.4 = {a}, X, = {trespas$, P = {s,fenced, D, = {d1,d2}, >a=
{d2} > {d:1}. There is a single agent, agentwho can trespass a field. Moreover, it
can be sanctioned and the field can be fenced. It has two desires, one to trégpass (
another one not to be sanctioneld), The second desire is more important.

In a multiagent system, beliefs, desires and goals are abstract concepts which are
described by rules built from literals.

Definition 4 (Multiagent system).A multiagent systemis atupld, X, B, D, G, AD,
MD,>), where(A, X, B,D,G, AD,>) is an agent set, and the mental description
MD : (BUM) — Rul(X) is a total function from the sets of beliefs, desires and goals
to the set of rules built fronX. For a set of mental attitudeS C B U M, we write
MD(S) = {MD(q) | q € 5}.

Example 4(Continued).M D(d,) = T — trespassM D(dy) = T — =s.

In the description of the normative system, we do not introduce norms explicitly,
but we represent several concepts which are illustrated in the following sections. Insti-
tutional facts () represent legal abstract categories which depend on the beliefs of the
normative system and have no direct counterpart in the wétld= X \ I are what
Searle calls “brute facts”: physical facts like the actions of the agents and their effects.
V(x,a) represents the decision of agenthat recognizes: as a violation by agent
a. The goal distributiorGD(a) C G, represents the goals of aganthe agent is
responsible for.

Definition 5 (Normative system).A normative multiagent system, writtens$i/ AS,
isatuple(A, X,B,D,G,AD,MD,>,n,1,V,GD) where the tuplé A, X, B, D, G,
AD,MD,>) is a multiagent system, and

— the normative system € A is an agent.

— the institutional factd C P are a subset of the parameters.

— the norm descriptio” : Lit(X) x A — X,, U P is a function from the literals and
the agents to the decision variables of the normative system and the parameters.

— the goal distributionGD : A — 2% is a function from the agents to the powerset
of the goals of the normative system, such thdt i~ | € M D(GD(a)), then
l € Lit(Xa U P).

Agentn is a normative system who has the goal that fenced fields are not trespassed.

Example 5(Continued).There is agenh, representing the normative system.
Xn = {s,V(trespassa)}, P = {fenced, D, = Gn = {91}, MD(g1) =
{fenced— —trespas$, GD(a) = {¢1 }.
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Agentn can sanction agert, becauses is no longer a parameter but a decision
variable.V (trespassa) represents the fact that the normative system considers a vi-
olation the action ok trespassing the field. It has the goal that fenced fields are not
trespassed, and it has distributed this goal to agent

In the following , we use an input/output logiait to define whether a desire or
goal implies another one and to define the application of a set of belief rules to a set of
literals; in both cases we use thets; operation since it has the desired logical property
of not satisfying identity.

Regulative norms are conditional obligations with an associated sanction and con-
ditional permissions. The definition of obligation contains several clauses. The first and
central clause of our definition defines obligations of agents as goals of the normative
system, following the ‘your wish is my command’ metaphor. It says that the obligation
is implied by the desires of the normative systapimplied by the goals of agemt,
and it has been distributed by agertio the agent. The latter two steps are represented
by out(GD(a), >,).

The second and third clause can be read as “the absencéafonsidered as a
violation”. The association of obligations with violations is inspired by Anderson’s re-
duction of deontic logic to alethic logic [19]. The third clause says that the agent desires
that there are no violations, which is stronger than that it does not desire violations, as
would be expressed by — V (~z,a) & out(Dy, >y).

The fourth and fifth clause relate violations to sanctions. The fourth clause says
that the normative system is motivated not to count behavior as a violation and apply
sanctions as long as their is no violation, because otherwise the norm would have no
effect. Finally, for the same reason the last clause says that the agent does not like the
sanction. The second and fourth clauses can be considered as instrumental norms [20]
contributing to the achievement of the main goal of the norm.

Definition 6 (Obligation). LetNMAS = (A, X,B,D,G,AD,MD,> n,I,V,GD)
be a normative multiagent system. Agentc A is obliged to see to it that <
Lit(Xa, U P) with sanctions € Lit(X, U P) in contextY C Lit(X) in NMAS,
written asN M AS = Oan(z, s|Y), if and only if:

1. Y — x € out(Dn, >n) Nout(GD(a),>y,): if Y then agenih desires and has as
a goal thatz, and this goal has been distributed to agant

2. YU{~z} — V(~z,a) € out(Dpn, >n) Nout(Gp, >n): if Y and~z, then agent
n has the goal and the desité(~z, a): to recognize it as a violation by ageat

3. T — =V(~x,a) € out(Dn, >n): agentn desires that there are no violations.

4. Y U{V(~=z,a)} — s € out(Dn,>n) Nout(Gy): if Y and agentn decides
V(~z, a), then agenh desires and has as a goal that it sanctions agent

5. Y — ~s € out(Dn, >n): if Y, then ageni desires not to sanction. This desire of
the normative system expresses that it only sanctions in case of violation.

6. Y —~s € out(Da,>a): If Y, then agent desires~s, which expresses that it

does not like to be sanctioned.

The rules in the definition of obligation are only motivations, and not beliefs, because
a normative system may not recognize that a violation counts as such, or that it does
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not sanction it: it is up to its decision. Both the recognition of the violation and the
application of the sanction are the result of autonomous decisions of the normative
system that is modelled as an agent.

The beliefs, desires and goals of the normative agent - defining the obligations -
are not private mental states of an agent. Rather they are collectively attributed by the
agents of the normative system to the normative agent: they have a public character,
and, thus, which are the obligations of the normative system is a public information.

Since conditions of obligations are sets of decision variables and parameters, insti-
tutional facts can be among them. In this way it is possible that regulative norms refer
to institutional abstractions of the reality rather than to physical facts only.

Example 6(Continued).Let: {g1, 92, 94} = Gn, GnU{g3,95} = Dn, {01} = GD(a)

M D(g2) = {fencedtrespas$ — V (trespassa) M D(gs) = T — —V(trespassa)
MD(g4) = {fencedV (trespassa)} — s M D(gs) = fenced— ~s

NMAS |= Oan(—trespasss | fenced, since:

1. fenced— trespassc out(Dy, >n) Nout(GD(a), >y)

2. {fencedtrespas$ — V (trespassa) € out(Dy,, >y) N out(Gn, >n)
3. T — =V(trespassa) € out(Dn,>n)

. {fencedV (trespassa)} — s € out(Dyn, >pn) N out(Gp, >n)

. fenced— ~s € out(Dyn, >n)

. fenced— ~s € out(Da, >2)

N

5
6

[14], and can be overridden by obligations in turn. A permission ta d@®an ex-
ception to an obligation not to doif agentn has the goal that is not considered as
a violation under some condition. The permission overrides the prohibition if the goal
that something does not count as a violatidh/( x+ — =V (x,a)) has higher priority
in the ordering>,, on goal and desire rules with respect to the goal of a corresponding
prohibition thatz is considered as a violatio’( A x — V(x,a)):

Definition 7 (Permission).Agenta € A is permitted by agena to see to it that: €
Lit(Xa U P) under conditionY” C Lit(X), written asNMAS | Pan(z | Y), iff
Y U {z} - -V (x,a) € out(Gn, >n): if Y andz then agenta wants thatz is not
considered a violation by ageat

Example 7(Continued).Let P = {fencedriver}, {gs} > {92},

MD(gs) = {fencedriver, trespas$ —~V (trespassa)

Then{fencedriver, trespas$ —~V (trespassa) € out(Dy, >n) N out(Gn, >n)
Hence,NM AS |= Pan(trespasq fenceda river)

Constitutive norms introduce new abstract categories of existing facts and entities,
called institutional facts. We formalize the counts-as conditional as a belief rule of the
normative systenn. Since the condition: of the belief rule is a variable it can be an
action of an agent, a brute fact or an institutional fact. So, the counts-as relation can be
iteratively applied.
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Definition 8 (Counts-as relation). Let NM AS=(A, X, B,D,G,AD,MD,> n,I,
V, GD) be a normative multiagent system. A literaE Lit(X) counts-agy € Lit(7) in
contextC C Lit(X), NMAS |= counts-ag(z, y|C), iff CU{z} — y € out(Bn, >n):
if agentn believesC andx then it believeg.

Example 8. P\ I = {fenced, I = {property}, X, = {trespas$, B, = {b}},
M D(b}) = fenced— property

ConsequentlyN M AS = counts-ag(fencedproperty T). This formalizes that for
the normative system a fenced field counts as the fact that the field is a property of that
agent. The presence of the fence is a physical “brute” fact, while being a property is an
institutional fact. In situatiort = {fenced, given B;, we have that the consequences
of the constitutive norms areut(B},, S, >n) = {property}

As shown in the example, the logic of constitutive norms does not satisfy identity:
fencedis not a consequence, since it represents a brute fact and not an institutional
fact. Constitutive norms, in contrast, provide a legal classification of reality in terms of
institutional facts only.

The institutional facts can appear in the conditions of regulative norms as the fol-
lowing example shows.

Example 9(Continued). A regulative norm which forbids trespassing can refer to the
abstract concept of property rather than to fenced figldgi(—trespasss | property).

Let: {91, 95,94} = Gn, Gu U{g3,95} = Dy {91} = GD(a)

M D(g};) = property— —trespassM D(g)}) = {property, trespas$ — V (trespassa)
MD(g5) =T — -V (trespassa) M D(g}) = {property, V (trespassa)} — s

MD(gt) = property— ~s

Then:

. property— —trespasse out(Dy, >n) Nout(GD(a), >y)

. {property, trespas$ — V (trespassa) € out(Dy, >yn) N out(Gy, >n)
. T — —V(trespassa) € out(Dn,>n)

. {property, V (trespassa)} — s € out(Dn,>n) Nout(Gn, >n)

. property— ~s € out(Dy, >n)

. property— ~s € out(Da, >a)

OO WN B

As the system evolves, new cases can be added to the notion of property by means
of new constitutive norms, without changing the regulative norms about property. E.g.,
if a field is inherited, then it is property of the heinherit — propertye M D(B,,).

From a knowledge representation point of view, constitutive norms behalatas
abstractionin programming languages: types are gathered in new abstract data types;
new procedures are defined on the abstract data types to manipulate them. So it is pos-
sible to change the implementation of the abstract data type without modifying the
programs using those procedures. In our case, it is possible to change the constitutive
norms defining the institutional facts without modifying the regulative norms which
refer to those institutional facts.

Since counts-as rules are beliefs and the logic is non-monotonic due to the priority
ordering on the beliefs, counts-as can be used to express exceptions to the classifica-
tion. This defeasible aspect mirrors the relation between obligations and permissions as
exceptions [2].
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6 The trade-off between constitutive and regulative norms

In this section, we extend our scenario described in Example 8-9 to design a legal sys-
tem equivalent to the one of Example 6-7.

Example 10(Continued).B., = {b,}, {b4} > {b}},
M D(b),) = fencedA river — —property.
out(B], = {b}, b4}, >n) = {{fencedA river — —property} } since
maz family(By,, S = {fencedriver}) = {{v}},{t5}},
preffamily By, S = {fencedriver}, >,,) = {{b}}},
outfamily(B;,, S = {fencedriver}, >, ) = {{—property} }
Thus, NM AS = counts-ag(fenced—property | river) and this belief overrides
the former one behindounts-ag(fencedproperty| T). This formalizes that the nor-
mative system does not consider as a property a fenced field if it is close to a river.

We show how a system containing constitutive and regulative norms like in Exam-
ple 8-10 can be interchanged with an equivalent system of regulative norms only like
the one of Example 6-7. By equivalence we mean that in the same state of the world the
same violations hold. Since it is possible to replace constitutive norms with regulative
norms only, a trade-off can be found between adding constitutive norms and achieving
a sufficient level of abstraction.

Even if input/output logic is an inference system on rules we cannot directly prove
the equivalence on the rules defining regulative and constitutive norms since they refer
to different sets of rules: goal rules and belief rules. We provide the equivalence in an
indirect way by considering the combined output of the rules.

Given the operation out, we define a combined output relation:
output(Q, Z, S, >n) = out(Z,out(Q, S, >,) U S, >,) whereQ C By, Z C M, and
S C Lit(X \ I). The institutional facts are the result of the reasoning of the normative
system, so they cannot be present in the initial state composed of brute facts.

Note that we reintroduce the brute fadtsas the input of the output operation on
the motivationsZ since the output operation on beliefs does not satisfy identity. We
needsS since the conditions of regulative norms can refer to brute facts as well as to the
institutional facts which are the consequences of the constitutive norms. In this way we
distinguish between the legal classification of reality and the information concerning
commonsense, among which the brute facts which are the input to constitutive norms.
Even if we attribute belief rules to the normative system these must be distinguished
from the belief rules of agents: these belief rules concern the relation between brute facts
and constitute their commonsense view of the work. The normative system as agent,
in contrast, does not contain any knowledge of this kind. The relevant commonsense
inferences are performed by the real agents playing roles in the normative system.

In our examples we haveitput(By, Gy, S, >n) = output(B., G’ ., S,>,) for
anyS € Lit(X \ I).

Sketch of proof. We consider only the cases where the conditions of the goals and
beliefs are satisfied. First, the normative system made of regulative norms only:
output(By, Gpn, S = {fencedtrespass$, >,) = out(Gn, out(By, S, >n) U S, >,) =

{—trespassV (trespassa), s}

from g1, g2, g4, Whereout(By, S, >, ) = 0 sinceB,, = 0.
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In contrast:
output(By, Gyn, S={fencedriver, trespas$, >,,)=out(Gp, out(By, S, >n) U S, >y)
= {—trespass—V (trespassa), ~s}
(from g1, g5, gs) Where agaiut(By, S, >5) = 0.
In case of the legal system of Example 8 made of both constitutive and regulative norms:
output(BL, G, S={fencedtrespas$, >, )=out(G, out(Bh, S, >n) U S, >,) =
{-trespassV (trespassa), s}
(from ¢1, g5, g4) Whereout(B,,, S, >,) = {property} (from b}).
In contrast:
output(B,,, G.,, S={fencedriver, trespas$, >, )=out(G,,, out(By, S, >n)US, >n)=
{—trespass—V (trespassa), ~s}
(from g1, ¢4, g5) Wwhereout(By,, S, >y ) = {—property} (from b}).

7 Related work

While the formalization of regulative norms, like obligations, prohibitions and permis-
sions, is often based in deontic logic on modal operators representing what is obligatory,
forbidden or permitted, the formalization of constitutive norms is rather different. An
attempt to make the notion of constitutive norm more precise is Jones and Sergot [5]'s
formalization of the counts-as relation. For Jones and Sergot, the counts-as relation ex-
presses the fact that a state of affairs or an action of an agent “is a sufficient condition
to guarantee that the institution creates some (usually normative) state of affairs”. As
Jones and Sergot suggest, this relation can be considered as “constraints of (operative
in) [an] institution”, and they express these constraints as conditionals embedded in a
modal operator. Jones and Sergot formalize this introducing a conditional connective
=, 10 express the “counts-as” connection holding in the context of an institution
They characterise the logic fes; as a classical conditional logic plus the axioms:

(A=sB)AN(A=,0) D (A=, (BANCO))

(A=s B)AN(C=3sB))D ((AVC) = B)

(A=, B)A(B=,C)) D (A=, C)

In addition, Jones and Sergot’s analysis is integrated by introducing the normal
KD modality D, such thatD,A means thatd is “recognised by the institution s”.
Accordingly, it is adopted the schem@ =, B) D Ds(A D B).

The limitation of this approach, according to Geletial. [21], is that the conse-
guences of counts-as connections follow non-defeasibly (via the closure of the logic
for modality D, under logical implication), whereas defeasibility seems a key feature
of such connections. The classical example is that in an auction if a person raises one
hand, this may count as making a bid. However, this does not hold if he raises his hand
and scratches his own head.

Finally, the adoption of the transitivity for their logic is criticized by Artesial.[3].

Artosi et al.[3]'s characterisation of the counts-as adopts a different perspective. Rather
than introducing a logic for the counts-as connection, and then linking it with, a
logic, they use one conditional operater to express any defeasible normative con-
nections in any institutions. They use the saieoperator as in [5] but they apply it
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to the components of normative links, to relativise them to a particular institution. Any
institution can only state what normative situation holds for itself, given certain condi-
tions, but according to a general type of conditionality. On the basis tiey define a
relativised=-, operator(A =, B) =qc5 (A = DsB) A (D;A = D,B)

The connectives is characterised by reflexivity and cumulative transitivity, whose
combination does not prevent defeasibility. The system is completed by introducing a
restricted version of the detachment of the consequent. To avoid losing non-monotonicity,
Artosi et al. [3] do not accept the strengthening of antecedent prop&tkyir{ our in-
put/output logic), thus making their logic weaker.

In contrast, in our model we accept the strengthening of anteceféhtifle and
the cumulative transitivity @7"). We do not accept instead identityd. First of all,
the adoption also ofd would make the system accepting also full transitivity. Non-
monotonicity is achieved via the constraint mechanism which uses also a priority or-
dering on the mental attitudes. Secondly, we do not acképecause we want to keep
separate brute facts and institutional facts “whose nature - as also Attaks{3] ac-
cept - is conceptually distinct from that of the empirical facts”.

Finally, a recent interesting approach to counts-as is the model of Gatosis[4].
They propose a framework for grounding a new formal semantics of expressions such
as: “A counts as B in institution c”, or “B supervenes A in institution ¢”. Constitutive
norms are interpreted essentially as contextualized subsumption relations establishing
taxonomies which hold only with respect to a specific (institutional) context.

8 Conclusions

In this paper we discuss the design of legal systems composed of constitutive and regu-
lative norms. We model legal systems as normative multiagent systems where the nor-
mative system is modelled as an agent using the agent metaphor: constitutive norms are
defined by the beliefs of the normative system and the regulative norms by its goals. The
characteristic of the counts-as relation is that it is not reflexive. The trade-off problem
between constitutive and regulative norms can be handled by as the trade-off between
beliefs and goals of the normative system. We show that constitutive norms, even if
they can be replaced by regulative norms, allow to create a level of abstraction to which
regulative norms can refer to, making it less sensitive to the changes in the legal system.

In [6] we extend this framework to model the problem of how the normative sys-
tem itself specifies who can change the normative system. This specification is made by
means of constitutive norms describe what facts count as the creation of new regulative
and constitutive norms in the normative system. This work is at the basis of the defi-
nition of contracts we make in [7]. Future work is, for example, elaborating the notion
of context to study which properties hold for it, and introducing hierarchies of norma-
tive systems composed of both constitutive norms and regulative norms, as we do for
obligations and permissions in [14].
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Contextual Terminologies
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Abstract. The paper addresses the issue of contextual representations
of ontologies, as it arises in the area of normative system specifications
for modeling multi-agent systems. To this aim, the paper proposes a for-
malization of a notion of contextual terminology, that is to say, a termi-
nology holding only with respect to a specific context. The formalization
is obtained by means of a formal semantics framework which enables
the expressivity of common description logics to reason within contexts
(intra-contextual reasoning), allowing at the same time the possibility to
reason also about contexts and their interplay (inter-contextual reason-
ing). Using this framework, two complex scenarios are discussed in detail
and formalized.

1 Introduction

The present research is motivated by problems stemming from the domain of
normative system specifications for modeling multi-agent systems ([5,19,10]).
In [6, 18] contexts have been advocated to play a central role in the specification
of complex normative systems and normative systems of high complexity (for
instance legal systems, or institutional ones) are viewed not only as regulative
systems, but also as systems specifying conceptualizations, or categorizations, of
the domain of entities they are supposed to regulate. In [12,9] we proposed and
applied a framework for representing this categorizing feature of normative sys-
tems via contextual taxonomic statements of the form “A counts as B in context
C” ([16]), where concept descriptions A and B displayed a very simple logical
form (essentially boolean compositions of concepts). This work intends to pursue
that research line further adding the necessary expressivity (essentially the pos-
sibility to deal with attributes or roles, i.e., binary relations besides concepts) to
model more complex scenarios: from simple taxonomies to rich description logic
terminologies.

The final aim consists in obtaining a framework in which to represent on-
tologies of different contexts and to reason about them both in isolation, i.e.,
within the contexts (intra-contextual reasoning), and in interaction, i.e. between
contexts (inter-contextual reasoning). For instance, at the intra-contextual level
a typical question would be of the form: given a set of subsumption relations
holding in context C, is A a subconcept of B in context C? At an inter-contextual
level instead, a typical question would be: given that context C is more concrete



than context D, is A a subconcept of B in context C? With such a machinery
it would then be possible to represent the ontological aspect of the regulating
activity of institutions in a formal way, and the ontologies of different institu-
tions could then be rigorously specified and reasoned about. To do this, we show
that the approach proposed in [12] can be naturally applied to richer description
logic languages thus providing the necessary expressive power we are interested
in. In fact, the framework presented here consists in a contextualized version of
the semantics of description logics. The proposal is tested in detail against two
different examples.

The exposition is structured according to the following outline. In Section
2 two scenarios are introduced which exemplify in detail the issues addressed
here, and some preliminary considerations are drawn. Section 3 is dedicated to
the exposition of the framework, and Section 4 to the formalization of the two
scenarios introduced in Section 2. Conclusions follow.

2 Preliminaries

2.1 Scenarios

We now depict two scenarios in order to state, in clear terms, the kind of rea-
soning patterns we are aiming to capture formally. They exemplify quite typical
forms of contextual conceptualizations occurring in the normative domain. The
first scenario deals with a rule establishing sufficient conditions for a person to
be liable of violating the regulation concerning access to public parks in three
different municipalities. The second scenario deals with the refinement of a de-
finition of “vehicle” from the abstract context of a general regulation to more
concrete contexts of municipal regulations. From a logical point of view, they
display description logic forms of reasoning at the level of the so-called taxo-
nomical boxes (TBoxes)! (e.g., reasoning with value restriction and existential
quantification, role subsumption) which were not yet available in our previous
proposal ([12]).

Ezample 1. (The public park scenario: “liability in parks”) In the regu-
lation governing access to public parks in region R it is stated that vehicles are
not allowed within public parks and that: “persons using vehicles within public
parks are liable for violating the regulation”. In this regulation no mention is
made of (possible) subconcepts of the concept vehicle, e.g., cars, bicycles, which
may help in identifying an instance of vehicle, nor it is stated what it actually
means to drive a vehicle: does the fact that I am wheeling my bicycle imply
that I am driving it? In municipal regulations subordinated to this regional one,
and therefore inheriting its global directives, specific subconcepts are instead
handled. In municipality M1 and M2 the following rule holds: “persons driving
bicycles within parks are liable of violating the regulation”. In M3 instead, it

! Taxonomical boxes or terminologies are, in the description logic vocabulary, sets of
inclusion relations between concepts.
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holds that to drive a bicycle does not constitute any violation. On the other
hand, in all M1, M2 and M3 it holds that cars are not allowed in public parks.
Moreover, in M2 it holds that “persons wheeling bicycles into public parks are
not liable for violating the regulation” despite liability arises in case bicycles
happen to be driven. In M1 and M3 instead, to wheel a bicycle is considered a
way of driving it.

DRIVE VEHICLE| DRIVE CAR |DRIVE BICYCLE|WHEEL BICYCLE
R liable not classifiable| not classifiable not classifiable
M1 liable liable liable liable
M2 liable liable liable not liable
M3 liable liable not liable not liable

Table 1. Liability in the public park scenario

In this scenario the concept of vehicle gets various interpretations. Instances
of car (w.r.t. the terminologies presupposed by M1, M2 and M3) are always
instances of vehicle, while instances of bicycle are only in some contexts
also instances of vehicle. What also gets various interpretations is the relation
driving: somehow driving in M2 has a different meaning than in M1 and M3.
Table 1 displays how sufficient conditions for determining liability come down
to be interpreted in three completely different ways by the contexts at issue,
although in all contexts it holds that persons driving vehicles are to be considered
liable. Note that context R cannot provide any qualification for actions such as
driving or wheeling a bicycle simply because its language cannot express those
notions.

Ezample 2. (The public park scenario: “teenagers on skateboards”)
Consider again a regulation governing access to public parks in region R where
it is stated that: “vehicles are not allowed within public parks”. Also in this
regulation no mention is made of (possible) subconcepts of the concept vehicle.
Nevertheless, a (partial) definition, specifying necessary conditions for something
to be a vehicle, is stated: “vehicles are conveyances which transport persons or
objects”. In municipal regulations subordinated to this regional one subcon-
cepts are instead introduced. This is done inheriting the definition stated at the
R level and refining it either incrementing the number of necessary conditions
for something to be considered a vehicle or stating sufficient ones. In municipal-
ity M1 the definition of vehicle is refined in the following sense: “self-propelled
conveyances which transport persons or objects are vehicles” and “vehicles are
self-propelled”. In M2, instead, the definition of vehicle is simply closed without
any refinement: “conveyances which transport persons or objects are vehicles”.
Besides, in both M1 and M2, it holds that “skateboards are conveyances which
are not self-propelled” and “teenagers are persons”. These rules determine a
different behavior of M1 and M2 with respect to concepts such as “skateboards
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transporting teenagers”. With respect to this concept the following rule holds
in M1: “skateboards transporting teenagers are not vehicles”. In M2 instead, it
holds that: “skateboards transporting teenagers are vehicles”.

The second scenario displays some other aspects of contextual conceptualiza-
tions. The concept of vehicle gets again various interpretations and is first
specified in its necessary conditions by context R and then completely defined
in the two concrete contexts M1 and M2. The abstract regulation states that all
vehicles are conveyances transporting persons or objects, leaving thus open the
possibility for some of such conveyances not to be vehicles. This is the case of
skateboards in M1 since M1 refines the abstract rule establishing more necessary
conditions (being self-propelled) for conveyances to be classified as vehicles. Con-
text M2 instead, simply closes the abstract rule through establishing that being
a conveyance transporting persons or objects is sufficient for being a vehicle. Be-
cause of this, the two contexts M1 and M2 validate terminologies diverging on the
conceptualization of the complex concept “skateboards transporting teenagers”.

These two scenarios exemplify interesting nuances typical of complex context-
dependent conceptualizations?. We will constantly refer back to them in the
remainder of the work, and our central aim will be to develop a formal semantics
framework able to represent analogous scenarios and to provide thus a rigorous
understanding of the forms of reasoning therein involved.

2.2 Contextualizing Terminologies

We want to devise a language and a semantics for talking about contextual
terminologies. More in detail, this turns out to devise a formal morphology and
a formal semantics meeting the following requirements.

Firstly, it should support reasoning about the validity of TBoxes with re-
spect to contexts giving a semantics to expressions of the type: “the concept
bicycle is a subconcept of the concept vehicle in context M1”. Besides this,
the framework should be able to express the fact that concepts may be unclas-
sifiable within specific contexts, that is, that specific subsumptions cannot be
said to be valid or not valid: in the context R of the regional regulation, whether
a person wheeling a bicycle within a public park is to be considered liable of
violating the regulation corresponds to a non evaluable subsumption since the
concept at issue is not part of the language of the context R (see Figure 2.1).
In some sense, it corresponds to a subsumption which is evaluated with respect
to the wrong context. Therefore, we want the framework to be able to express
whether a concept gets meaning within a context: “concept bicycle is mean-
ingful with respect to context M1”. Completely analogous expressions should be
available in order to handle a contextualization of role (or attribute) hierarchies
such as: “role wheel (wheeling) is a subrole of drive (driving) in context M2”

2 Tt is instructive to notice that both scenarios represent instances of a typical form
of contextual reasoning called “categorization” ([3]), or “perspective” ([1]), that is,
the form of reasoning according to which a same set of entities is conceptualized in
many different ways.
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and “role wheel is meaningful in context M2”. Secondly, it should provide a
representation of context interplay. In particular, we will introduce: a contextual
disjunction operator and a contextual focus operator>.

The first one yields a union of contexts: the contexts “viruses” and “bacte-
ria” can be unified on a language talking about microorganisms generating a
more general context like “viral or bacterial microorganisms”. The second one,
which plays a central role in our framework, yields the context consisting of
some information extracted from the context on which it is focused: the context
categorizing “crocodiles”, for instance, can be obtained via focusing the context
which categorizes all reptiles on the language talking only about crocodiles and
disregarding other reptiles. In other words, the operator prunes the informa-
tion contained in the context “reptiles” focusing only on what is expressible in
the language which talks about crocodiles and abstracting from the rest. Also
mazimum and minimum contexts will be introduced: these will represent the
most general, and respectively the most specific, contexts on a language?. It is
important to notice that all operations explicitly refer to a precise language on
which the operation should take place. As we will see in the following section
our formal language will be tuned to incorporate this feature.

Finally, our language should represent specific relations between contexts.
Examples 1 and 2 consider groups of contexts in which all contexts are special-
izations of an abstract one (R). This suggests the consideration of a generality
relation between contexts® expressing that a context is at most as general as
another one: the context of the abstract regulation R is somehow more general
than the concrete ones M1 and M26.

These intuitions about the semantics of context operators will be clarified and
made more rigorous in Section 3.2 where the semantics of the framework will be
presented, and in Section 4 where the examples will be formalized deploying all
these types of expressions.

3 A Formal Framework

Our proposal consists in mixing the semantics of description logic ([2]) with the
idea of modeling contexts as sets of models ([7]), delivering a framework able to
represent reasoning about sets of concept subsumptions, i.e., taxonomical boxes
(TBoxes), in a contextual setting.

3 In [12,11] the focus operation is called abstraction. We decided to modify our termi-
nology in order to avoid confusions with other approaches to notions of abstraction
like for instance [8].

4 In this paper, we limit the number of context operations to disjunction and focus.
More operations are formalized in [12]. It is worth noticing, in passing, that similar
operations and special contexts are discussed in [17].

5 Literature on context theory often addresses this type of relation between contexts.
See for instance [15, 3].

5 As the discussion of the formalization of the examples will show (Section 4), there
are some more subtleties to be considered since R is not only more general but is
also specified on a simpler language.
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3.1 Language

The language we are defining can be seen as a meta-language for TBoxes de-
fined on AL description logic languages, which handle also concept union, full
existential quantification (we want to deal with concepts such as “either car or
bicycle” and “persons who drive cars”) and role complement (we want to be able
to talk about roles such as “not driving”)”.

The alphabet of the language £Y7 (language for contextual terminologies)
contains therefore the alphabets of a family of languages {£;}o<i<n. This family
is built on the alphabet of a given “global” language £ which contains all the
terms occurring in the elements of the family. Moreover, we take {£;}o<i<n to
be such that, for each non-empty subset of terms of the language £, there exist
a L; which is built on that set and belongs to the family. Each £; contains
two non-empty finite sets A; of atomic concepts (A), i.e., monadic predicates,
and R; of atomic roles (R), i.e., dyadic predicates. These languages contain also
concepts and roles constructors. As to concept constructors, each £; contains the
zeroary operators L (bottom concept) and T (top concept), the unary operator
- (complement), and the binary operators M and U. As to role constructors,
each £; contains the unary operator R (role complement). Finally, the value
restriction operator VR.A (“the set of elements such that all elements that are
in a relation R with them are instances of A”) applies to role-concept pairs.

Besides, the alphabet of LT contains a finite set of context identifiers ¢, two
families of zeroary operators {L;}o<i<n, (minimum contexts) and {T;}o<i<n
(maximum contexts), one family of unary operators {fcs; }o<i<n (contextual fo-
cus operator) , one family of binary operators {Y;}o<i<n (contexts disjunction
operator), one context relation symbol < (context ¢; “is less general than” con-
text cz), two meaningfulness relation symbols “. |¢ .” (concept A is meaningful

in context ¢) and “. |" .” (role R is meaningful in context ¢), and finally two
contextual subsumption relation symbols “. : . C¢.” (within context ¢, concept
A; is a subconcept of concept Az ) and “. : . C".” (within context ¢, role Ry

is a subrole of role Ry) for, respectively, concept and role subsumption®. Lastly,
the alphabet of LT contains also the sentential connectives ~ (negation) and
A (conjunction) °.

Thus, the set = of context constructs (&) is defined through the following
BNF:

Eu=c| L | Ty fes; €] & Y&,

" This type of language is indeed an ALC conceptual language extended with role
complement. See [2].

8 We use superscripts here in order to distinguish between meaningfulness of concepts
or roles, and subsumptions of concepts or roles. Nevertheless, in what follows, su-
perscripts will be dropped when no confusion arises in order to lighten the notation.

9 It might be worth remarking that language £°7 is, then, an expansion of each £;
language. Notice also that all operators on contexts are indexed with the language
on which the operation they denote takes place.
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Concept constructs and role constructs are defined in the standard way. The set
P of roles descriptions (p) is defined through the following BNF:

pu=R|DP
The set I" of concept descriptions () is defined through the following BNF:
Yu=A[L|T [y [7nM7 |V
Concept union and existential quantification are defined respectively as:

Y1 U2 =qef (771 M =72) and Jp.y =q¢ ~(Vp.—7).
Finally, the set A of assertions («) is defined through the following BNF:

an=y ¢ pl"EEME R |E:m T p|la<E] ~ala Aas.

Strict contextual subsumption and contextual equivalence are obviously defined:

EmMC 72 =qefE NME A~y
§:p1 T p2=qef &P C p2 A ~Eip2 T py
EmMm="12=qef§ MCE %2 AN E:Emn

E:pr="p2=qer &P E p2 A §:pa T pr.

The set of atomic assertions of the language is then constituted by expressions
enabling exactly the kind of expressivity required in Section 2.2: meaningfulness
of concepts and roles in contexts, contextual subsumptions of concepts and roles,
generality ordering between contexts.

3.2 Semantics

As exposed in the previous section, a LT consists of four classes of expressions:
= (context constructs), P and I" (role and concept descriptions), A (assertions).
Semantics of P and I" will be the standard description logic semantics of roles and
concepts, on which our framework is based. Semantics for = will be given in terms
of model theoretic operations on sets of description logic models, and at that
stage the semantics of assertions .4 will be defined via an appropriate satisfaction
relation. The structures obtained, which we call contertual terminology models
or ct-models, provides a formal semantics for £¢7 languages.

The firs step is then to provide the definition of a description logic model for
a language £; ([2]).

Definition 1. (Models for £;’s)
A model m for a language L; is defined as follows:

m = (Am,Tm)

where:
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— A, is the (non empty) domain of the model;

— T 1s a function T, : AjUR; — P(A,,)UP(A,, x A,,), such that to every
element of A; and R an element of P(A,,) and, respectively, of P(A,;, x Ap,)
1s associated. This interpretation of atomic concepts and roles of L; on A,
is then inductively extended:

In(Ll) = 0
:Z-Tn (_"Y) - Am\ Zm (’Y)

In(mMy2) = Zn(1) NIm(v2)
In(Vpy) = {a€ A, | Vb, < a,b>€ I,(p) =be L,(7)}
Im(p) = A X Ap\ I (p).

A model m for a language £; assigns a denotation to each atomic concept (for
instance the set of elements of A,,, that instantiate the concept bike) and to each
atomic role (for instance the set of pairs of A,, which are in a relation such that
the first element is said to “drive” the second element of the pair). Accordingly,
meaning is given to each complex concept (for instance the set of elements of
A, that instantiate the concept vehicle Ll bike) and to each complex role (for
instance the set of pairs listing elements related by role drive).

3.3 Models for £€T

We can now define a notion of conteztual terminology model (ct-model) for lan-
guages L7,

Definition 2. (ct-models)

A ct-model M is a structure:

M = ({Mi}o<i<n, )
where:

— {M,}o<i<n is the family of the sets of models M; of each language L;. That
is, Ym € M;, m is a model for L;.

— T is a function I : ¢ — P(Mp) U...UP(M,). In other words, this func-
tion associates to each atomic context identifier in ¢ a subset of the set of
all models in some language L;: I(c) = M with M C M; for some i s.t.
0 < i < n. Function I can be seen as labeling sets of models on some lan-
guage i via atomic context identifiers. Notice that 1 fixes, for each atomic
context identifier, the language on which the context denoted by the identifier
is specified. We could say that it is 1 itself which fixes a specific index for
each atomic context identifier c.

—vm',m" € Uycicp, My, Ay = Ay That is, the domain of all models m
is unique. We assume this constraint simply because we are interested in
modeling different conceptualizations of a same set of individuals.

Contexts are therefore formalized as sets of models for the same language.
This perspective allows for straightforward model theoretical definitions of op-
erations on contexts.
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3.4 Context focus

We model focus as a specific operation on sets of models which provides the
semantic counterpart for the conteztual focus operator introduced in £¢7. Intu-
itively, abstracting a context £ to a language L£; yields a context consisting in
that part of £ which can be expressed in L;.

Let us first recall a notion of domain restriction (]) of a function f w.r.t. a
subset C' of the domain of f. Intuitively, a domain restriction of a function f is
nothing but the function C'f having C' as domain and s.t. for each element of

C, f and Cf return the same image: C|f = {(z, f(z)) |z € C}.

Definition 3. (Context focus operation: ];)
Let M’ be a set of models, then: |;M' = {m | m = (A, A; UR;]|Z,v) & m' €
M'}.

The following can be proved.

Proposition 1. (Properties of context focus)
Operation |; is: surjective, idempotent (1;(1:M) =1:M), normal (1,0 = 0), ad-
ditive (“I(Ml UMQ) :]Z—Mlu]ng), monotonic (Ml C M, :>-|1M1 C\; 2).

Proof. A proof is worked out in [11].

The operation of focus allows for shifting from richer to simpler languages
and it is, as we would intuitively expect: surjective (every context, even the
empty one, can be seen as the result of focusing a different richer context, in the
most trivial case, a focus of itself), idempotent (focusing on a focus yields the
same first focus), normal (focusing the empty context yields the empty context),
additive (the focus of a context obtained via joining of two contexts can be
obtained also joining the focuses of the two contexts), monotonic (if a context
is less general then another one, the focus of the first is also less general than
the focus of the second one). Notice also that operation ]; yields the empty set
of models when it is applied to a context M’ the language of which is not an
expansion of £;. This is indeed very intuitive: the context obtained via focus of
the context “dinosaurs” on the language of, say, “gourmet cuisine” should be
empty.

A detailed comparison of our account of focus with approaches available in
the literature on context theory is discussed in [11].

3.5 Operations on contexts

We are now in a position to give a semantics to context constructs as introduced
in Section 3.1. In Definition 2 atomic contexts are interpreted as sets of models
on some language £; for 0 < i < n: I(¢) = M € P(Mp) U...UP(M,,). The
semantics of context constructs = can be defined via inductive extension of that
definition.
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Definition 4. (Semantics of context constructs)
Let £,&1,&2 be context constructs, then:

I(fes; &) ] 1(€)
I(L:) =
I(Ty) =
I(& Y3 52) 1 (I(&1) U I(&)).
The focus operator fcs; is interpreted on the contextual focus operation intro-
duced in Definition 3, i.e., as the restriction of the interpretation of its argument
to language £;. The L; context is interpreted as the empty context (the same on
each language); the T, context is interpreted as the greatest, or most general,
context on L;; the binary Y ;-composition of contexts is interpreted as the lowest
upper bound of the restriction of the interpretations of the two contexts on L;.
In [15] the statement about the need for addressing “contexts as abstract
mathematical entities” was set forth. Here, moving from an analysis of contex-
tual terminologies, we develop an account of context interplay based on model
theoretic operations. In some sense, we propose a view on contexts as “algebraic
entities”. In fact, it is easy to prove ([11]) that contexts, as conceived here, are
structured according to a Boolean Algebra with Operators ([14]). This observa-
tion distills the type of conception of context we hold here: contexts are sets of
models on different concept description languages; on each language the set of
possible contexts is structured in a Boolean Algebra; adding operations of focus
on a finite number of sublanguages yields a Boolean Algebra with Operators.

3.6 Assertions
The semantics of assertions is defined as follows.

Definition 5. (Semantics of assertions: =)
Let £,£1,& be a context constructs, v,7y1,7v2 concept description, then:

MEy €& iff {Del| (7,De) €L & mel(€)} #0 (1)
MEpl & iff {D.]| (p,Dy) €L &mel(§)}#0 (2)
MESMEy ff MEnLEMEYR LS

and Ym € 1(§) Zpm(11) € Zm(72) (3)
MES:pEpe iff MEp [{EMEpP |

and ¥m € 1(§) Zm(p1) € Zm(p2) (4)
M & <& iff 1(6) C 1) (5)

Clauses (1) and (2) specify when a concept, respectively a role, is meaningful
with respect to a context. This is the case when the set of denotations D, and
D, which the models constituting the context attribute to that concept (D,
being a set of elements of the domain) or that role (D, being a set of pairs of
elements of the domain), is not empty. If concept v is not expressible in the
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language of context &, then concept 7 gets no denotation at all in context £.
This happens simply because concept v does not belong to the domain of func-
tions Z,,, and there therefore exists no interpretation for that concept in the
models constituting £. The same holds for a role p. Clauses (3) and (4) deal
with satisfaction of contextual subsumptions. A contextual concept subsump-
tion relation between -; and 7- holds iff concepts 7; and 7, are defined in the
models constituting context &, i.e., they receive a denotation in those models,
and all the description logic models constituting that context interpret +; as
a subconcept of v5. Note that this is precisely the clause for the validity of a
subsumption relation in standard description logics, but together with the fact
that the concepts involved are actually meaningful in that context. Intuitively,
we interpret contextual subsumption relations as inherently presupposing the
meaningfulness of their terms'®. A perfectly analogous observation holds also
for the clause regarding contextual role subsumption relations. Clause (5) gives
a semantics to the < relation between context constructs interpreting it as a
standard subset relation: £ < & means that context denoted by &; contains at
most all the models that & contains, that is to say, & is at most as general as
&,. Clauses for boolean connectives are the obvious ones.

Notions of validity and logical consequence are classically defined. An asser-
tion « is valid if all ct-models M satisfy it. An assertion « is a logical consequence
of the set of assertions aq, ..., a, if all ct-models satisfying aq, ..., a,, satisfy a.

4 Contextual Terminologies at Work

4.1 Formalizing the first scenario

We are now in the position to formalize Example 1.

Ezample 3. (Sufficient conditions for “liability”) To formalize the first sce-
nario within our setting a language £ is needed, which contains the following
atomic concepts: person, liable, vehicle, car, bicycle; and the following
atomic roles: drive and wheel. Four atomic contexts are at issue here: the con-
text of the main regulation R, let us call it cg; the contexts of the munici-
pal regulations M1, M2 and M3, let us call them cpsq, cpro and cpr3 respec-
tively. These contexts should be interpreted on two relevant languages (let us
call them Ly and £;) s.t. Ag = {person, liable,vehicle}, Ry = {drive} and
A, = {person,liable,vehicle, car,bicycle}, R; = {drive, wheel}. That is to
say, an abstract language concerning only persons, liability, vehicles and the ac-
tion of driving, and a more detailed language concerning, besides liable persons,
vehicles and driving, also cars, bicycles and the action of wheeling. The sets of
all models for £y and £ are then respectively Mgy and Mj.

10 For a more detailed discussion of these clauses we refer the reader to [12].
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To model the desired situation, our ct-model should then at least satisfy the
following £T formulas:

cym1 Yo cm2 YoCus X CR (6)
~ (car | cg) A ~ (bicycle | cg) A ~ (wheel | cg) (7)
cp : person [ 3drive.vehicle C person[lliable (8)
cym1 Y1came Y1 ceps : car T vehicle (9)
cpm1 Y1 €y bicycle C vehicle (10)
cp3 : bicycle C —wvehicle (11)
cy1 Y1 ey - wheel T drive (12)
care : wheel C drive (13)
cym1 Y1 ¢eme Y1 eps : dwheel.car = L (14)

Formula (6) plays a key role, stating that the three contexts cps1, care, carz are
concrete variants of context cr. It tells this by saying that the context obtained
by joining the three concrete contexts on language Ly (the language of cpr) is
at most as general as context cg, that is: |oI(car1)Ulol(ear2)Ulol(ears) C I(cr)
(see Section 3.2). As we will see in the following, this makes cps1, cpre and cps
inherit what holds in cg. Formula (7) specifies what concepts and roles do not
get interpretation in the abstract context cg. Formula (8) formalizes the abstract
rule to the effect that persons driving vehicles (within public parks) are liable for
a violation of the applicable regulation. Formulas (9)-(11) describe the different
taxonomies holding in the three concrete contexts at issue, while formulas (12)
and (13) describe the different role hierarchies holding in those contexts. The
last formula can be seen as simply stating some background knowledge to the
effect that to wheel a car is an empty concept.

To discuss in some more depth the proposed formalization, let us first list
some interesting logical consequences of formulas (6)-(14). We will focus on sub-
sumptions contextualized to monadic contexts, that is to say, we will show what
the consequences of formulas (6)-(14) are at the level of the three contexts ¢,
cyre and cpy3 considered in isolation.

(6,8) E cpr1 : person 1 3drive.vehicle T person[lliable
(9) E ca1 : person M 3drive.car T person M 3drive.vehicle
(10) E ¢ : person 1 3drive.bicycle C person 1 3drive.vehicle
R cpr1 : personl1dwheel.bicycle C person 1 ddrive.bicycle
10,12) F P Jwheel y P Jdri y
R cp1 - personf1ddrive.bicycle C person(lliable
6,8,10) F P Jdri y P

(6,8,10,12) E cps1 : person 1 Iwheel.bicycle T person[lliable
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(6,8) E cprz2 : person M 3drive.vehicle C person[lliable
(9) E cara : person M 3drive.car C person M 3drive.vehicle

(10) E cpa = person 1 3drive.bicycle C person [13drive.vehicle

)

)

)
(13) E caro : person M 3wheel.bicycle C person (1 3drive.bicycle
(10 13) F caro : person M 3drive.bicycle C person M 3drive.vehicle
)
8)
) E

(6,8,10) F cpo : person M 3drive.bicycle C personllliable
( F cpre : personl—liable C person 1 —3drive.vehicle
(6,8,9,10,13) E ~ cpro : person M Iwheel.bicycle C personllliable

(6,8) E cpr3 : person M Idrive.vehicle C person[lliable
(9) E cars : person M 3drive.car C person M 3drive.vehicle

(11) E cpro = person M 3drive.bicycle C person 1 3drive.—wvehicle

( ,8) E caprs - personl1—liable C person 1 —-ddrive.vehicle

)
)
)
(12) E cpr3 - person M dwheel.bicycle T person M 3drive.bicycle
)
(6,8,11) F ~ cpy3 : person 1 3drive.bicycle C person[1liable

)

(6,8, 11 12) F ~ cp3 @ person N dwheel.bicycle  personlliable

These are indeed the formulas that we would intuitively expect to hold in our
scenario. The list displays three sets of formulas grouped on the basis of the
context to which they pertain. Let us have a closer look to them. The first
consequence of each group results from the generality relation expressed in (6),
by means of which, the content of (8) is shown to hold also in the three concrete
contexts: in simple words, contexts cpr1, car2 and cprs inherit the general rule
stating the liability of persons driving vehicles (within public parks). Via this
inherited rule, and via (9), it is shown that, in all contexts, who drives a car
is also held liable (second consequence of each group). As to cars and driving
cars then, all contexts agree. Where differences arise is in relation with how the
concept of bicycle and the role of wheeling are handled.

In context cpsi, we have that it does not matter if somebody wheels or
actually drives a bicycle, because in both cases this would count as driving a
vehicle, and therefore of violating the regulation. In fact, in this context, a bicycle
is a vehicle (10) and to wheel is a way of driving (11). Context cpso, instead,
expresses a different view. Since bicycles count as vehicles (10), to drive a bicycle
is still a ground for liability. On the other hand, to wheel is actually classified as
a way of refraining from driving (13), and therefore, persons wheeling bicycles do
not count as persons driving vehicles, and do not commit any violation. Context
cp3 yields yet another terminology. Here bicycles are classified as objects which
are not vehicles (11). Therefore, although to wheel is conceived as a way of
driving (11), both to drive and to wheel a bicycle does not determine liability.
With respect to this, it is instructive to notice that even though both in cpse
and cpr3 to wheel a bicycle is not a sufficient reason for being held liable, this
holds for two different reasons: in cpso because of (13), and in ¢pr3 because of
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(11). This illustrates how our framework is able to cope with some quite subtle
nuances that characterize contextual classifications.

4.2 A model of the scenario

In this section we expose a simple ct-model satisfying (6)-(14). Let us stipulate
that the models m that constitute our interpretation of contexts identifiers con-
sist of a domain A,, = {a,b,c,d,e, f,g}. Being Ly and £, the two languages at
issue, the domain of the ct-models is My U M;. A ct-model would then be, for
instance, a structure (Mg U My, I) where I is such that:

— I(epn) = {m1,ma} C My s.t. Z,,, (person) = {e, f,g}, Zm, (vehicle) =
{a,b,c,d}, T, (bicycle) = {a,b}, Ip,(car) = {c¢,d}, Iy, (drive) = {<
e,a >, < f,c>}, I, (wheel) = {< e,a >}, T,,,(1iable) = {e, [} and Z,,,
agrees with Z,,,, on the interpretation of person, bicycle, car, vehicle and
T, (drive) = {< f,e¢>,< g,d >}, I, (wheel) = {< g,d >}, Z,,,(1iable) =
{f.9}-

— I(epe) = {ms,ma} C My s.t. I, and Z,,, agree with Z,,, on the inter-
pretation of person, bicycle, car, vehicle and Z,,, (drive) = {< f,d >, <
g,a >}, Iy (wheel) = {< e,a >}, T, (1iable) = {f, g} and Z,,,(drive) =
{<e,c>}, I, (wheel) = {< f,a >}, I,p,(liable) = {e}.

— I(epms) = {ms} € My s.t. Z,,,, agrees with Z,,, on the interpretation of
person, bicycle, car and Z,,, (vehicle) = {c¢,d}, Ty, (drive) = {< e,a >
, < f,e>,<g,d>}, I, (wheel) = {< e,a >}, Z,,, (1iable) = {f, g}.

—I(cg) = {m | m = (A, Ao URY]Z;) and 1 < i < 5}, that is, cg is inter-
preted by the model as the union of all models constituting cps1, cpro and
cps restricted to the language Lo.

The model makes an interesting feature of our semantics explicit. In contexts cpsq
and cpro the set of liable persons do not coincide in the two models constituting
the context; nevertheless only persons driving vehicles are indeed liable. This
clearly shows that contexts can be viewed as clusters of possible situations all
instantiating the same terminology!!.

4.3 Formalizing the second scenario
The formalization of the scenario introduced in Example 2 follows.

Ezample 4. (Categorizing “teenagers on skates”) The global language £
needed contains the following atomic concepts: conv, person, obj, vehicle,
teenager, skate; and the following atomic role: transp. Three are the atomic
contexts at issue here: the context of the main regulation R, let us call it cg; the
contexts of the municipal regulations M1 and M2, let us call them cp;1 and cpro
respectively. These contexts should be interpreted on two relevant languages (let

1 We developed this intuition also in a modal logic setting modeling contexts as sets
of possible worlds. See [13].
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us call them £y and £1) s.t. Ag = {conv, person, obj,vehicle}, Ry = {transp}
and A; = Ao U {self _prop, teenager, skate}, Ry = Ry. That is to say, an
abstract language concerning only conveyances, persons, objects, vehicles and
the attribute of transporting, and a more detailed language concerning, besides
this, also teenagers and skates. The sets of all models for £y and £; are then
respectively My and M;. To model the desired situation, a ct-model should then
at least satisfy the following £¢7 formulas:

cm1 Yo M2 X CR (15)
~ (teenager | cg) A ~ (skate | cg) (16)
cg : vehicle C conv M Vtransp.(person L obj) (17)
¢yl : vehicle C self prop (18)
¢ : conv [ Viransp.(person L obj) Mself prop C vehicle (19)
cpre @ conv [1Vtransp.(person Ll obj) C vehicle (20)
cp1 Y1 cpo : teenager [ person (21)
cyi Y1 eye : skate T conv (22)
cp1 Y1 cepro : skate C —self prop (23)

For reason of space, we cannot discuss this example in as many details as the
previous one. We stress the most important aspects. Formulas (15) and (16)
are the analogous of formulas (6) and (7). Formula (17) represents the abstract
constraints that context cg imposes on the concept vehicle.

Formulas (18), (19) and (20) express the additional constraints on the con-
cept vehicle holding in context cps1 and cpro respectively: both contexts specify
sufficient conditions and context cpr1 adds also new necessary ones (18). Formu-
las (21) and (22) state the intuitive background knowledge common to the two
concrete contexts. The point of the scenario consists in showing how teenagers
on skateboards are conceptualized in the three contexts, that is to say: how are
concept skateldtransp.teenager and concept vehicle related in each context?
This can be easily shown via some relevant logical consequences of (15)-(23):

(15,17,18,19) |= car1 ¢ conv M Viransp.(person U obj) M self _prop = vehicle
(15,17,18,19,21,22,23) |= car1 : skate 1 Jtransp.teenager C —vehicle
(15,17,20) |= cpre = conv M Viransp.(person Ll obj) = vehicle
(15,17,20,21,22) |= cpro : skate M Jtransp.teenager C vehicle.

These formulas show that in the two concrete contexts two different definitions
of vehicle hold, and therefore two different conceptualizations of concepts such
as skate I Jtransp.teenager: since skateboards are, in cjps1, non self-propelled,
even if they are conveyances transporting people, they are not classifiable as
vehicles .
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5 Conclusions

We motivated and devised a formal framework for representing contextual on-
tologies via a contextualized version of description logic semantics. The key idea
has been to show that the basic intuition of understanding contexts as sets of
description logic models, which we presented in [12], works smoothly also with
subsumption statements of more complex concept descriptions. The next step
will be to side contextual terminologies with appropriate contextual assertion
boxes (ABoxes) in which to reason about contextual instantiations of concepts
and roles.

In future work we will focus on developing a proof theory along the lines
sketched in [11] and on analyzing the complexity of the framework especially
with respect to inter-contextual reasoning. We intend also to apply contextual
terminologies to the study of the contextual meaning of actions in agents insti-
tutions: raising a hand during a bid has a different meaning than raising a hand
during a scientific workshop. A natural way to do this, would be to exploit es-
tablished results about the relation between dynamic logic and description logic
([4]) to get to a contextualized form of dynamic logic.
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Abstract. We propose a simple event calculus representation of con-
tracts and a reactive belief-desire-intention agent architecture to enable
the monitoring and execution of contract terms and conditions. We use
the event calculus to deduce current and past obligations, obligation
fulfilment and violation. By associating meta-information with the con-
tracts, the agent is able to select which of its contracts with other agents
are relevant to solving its goals by outsourcing. The agent is able to
handle an extendable set of contract types such as standing contracts,
purchase contracts and service contracts without the need for a first-
principles planner.

1 Introduction

Multi-agent systems is a growing research area and has already started to find
application in industry in web services and the semantic web. There is also
increased interest in agent coordination and choreography. Our approach sees
contracts as a means of formally describing the relationships between agents
in terms of obligations and permissions, as well as providing a coordination
function.

By expressing the terms and conditions of a contract as a set of event-based
rules — and so long as the participating agents agree on the history of events
relevant to their contracts — an agent is able to obtain a completely unambiguous
and indisputable view of the state of the contract at any given point in time.

We claim that the AgentSpeak(L)[11] architecture, with relatively few ex-
tensions, enables an agent to behave in a reactive manner (as is the case with
service agents, where they react to obligations imposed on them) or a proactive
manner where it makes use of agreed or newly proposed client contracts in order
to impose obligations on other agents to do things for it. It may do this both
to satisfy its own goals, or to discharged obligations it has arising from other
contracts.

Starting off with a description of how contracts may be represented in the
event calculus, we give an example of a short-term contract to conduct a pur-
chase and a long-term standing contract to set-up short-term purchase contracts.
In section 3 we discuss how the agents may communicate with each other and in
section 4 we show how these communications can be used to effect the contract
state (such as established facts, obligation fulfilment and violation). Section 5



briefly presents the AgentSpeak(L) architecture and how we have used and ex-
tended it to incorporate reasoning about contracts. We give the plan libraries
for the customer and vendor agents which are able to monitor a general class of
purchase and standing contracts, of which the contracts presented in section 2
are instances. Finally we review related work and concluding remarks.

2 Contract Representation

The core of the contract representation language is the event calculus [10], where
communications are events and the contract rules specify how the events initiate
and terminate obligation fluents. We make an implicit assumption that an agent
is permitted to perform any communication that, taking into account the history
of the use of the contract up to this point, will initiate an obligation on another
party to the contract. This assumption has been sufficient for the examples
studied so far, however, we do intend to investigate explicit representation of
permissions in future work. In this paper we are using the Prolog variable syntax
convention where variables begin with an uppercase letter.

We are using the full event-calculus[12] without the releases predicate since
the examples we have considered so far do not require the use of non-inertial flu-
ents. We also dispense with the initiallyP and initiallyN predicates by provid-
ing a contract start event, and writing initiates(start, F, T) and terminates
(start, F, T) respectively. Figure 1 summarises the axioms of the event calcu-
lus.
holdsAt(F,T) « happens(E,T1) A Ti<T A

initiates(E,F,T1) A not clipped(T1,F,T).
notHoldsAt(F,T) « happens(F, T1) A Ti<T A

terminates(E, F, T1) A not declipped(T1,F,T).
clipped(TO,F,T1) <> JT[TOST A T<T1 A terminates(E,F,T)].
declipped(T0,F,T1) « IT[TOST A T<T1 A initiates(E,F,T)].

Fig. 1. Event Calculus Summary

The body of a contract is represented by a binary relation, contractClause,
between the label of the contract and the clauses belonging to the contract.
Variables can be shared between the contract label and the clauses — those
appearing in the label are conceptually parameters to the contract. If we were
representing the contracts directly in Prolog, there would be one contractClause
definition for each rule of the contract. For example, Figure 2 shows the first
rule of a short term contract about a purchase transaction.

contractClause(
customerVendorContract_purchase(customer1 :C, vendor:V |
vendorBank:VB, customerBank:CB, deliveryService:DS, item:I, price:P),
initiates(start, oblig(V, achieve(value(invoice-no, _)), T+100), T).

Fig. 2. Contract Clause as Prolog

! To aid readability we employ the syntax field:Value to indicate a named field or
parameter.
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The label of the contract is customerVendorContract_purchase(...). The pa-
rameters to the left of the | are the principals of the contract, usually the offeror
and the offeree in a normal two party contract. The rule reads that at the
start of the contract, the vendor (V) is obliged to announce the invoice number
(invoice-no) relating to the purchase within 100 time units. start is the event
marking the start of the contract’s lifetime. oblig is a 3-place fluent relation
between the bearer, the goal to be performed and its deadline. achieve indicates
a state of affairs is to be achieved. value is a binary fluent relating contract
variables to their values.

For ease of presentation, we adopt a more compact syntax, where the label is
written once at the beginning of the contract, and the rules are written inside the
following brace delimited block. Macro definitions for frequently used terms are
written in small caps and marked with = and should be textually substituted
by the reader as they occur.

2.1 Short-term Contracts

Figure 3 shows the full text for a purchase contract, parameterised by the item
being purchased, the price, the vendor, the customer, the vendor’s and customer’s
bank, and a delivery service.

customerVendorContract_purchase (

customer:C, vendor:V |

vendorBank:VB, customerBank:CB, deliveryService:DS, item:I, price:P) {
Paip(R) = paid(payer:C, payee:V, price:P, reference:R).
DELIVERED(R) = delivered(item:I, destination:C, invoice-no:R).
InvoiceOBLIG(DL) = oblig(V, achieve(value(invoice-no, _), DL).
PayOBLIiG(R, DL) = oblig(C, achieve(Paip(R)), DL).
DELIVEROBLIG(R, DL) = oblig(V, achieve(DELIVERED(R)), DL).

initiates(start, INvoIceEOBLIG(T+100), T).
initiates(E, PayOBLIiG(R, T+100), T) « initiates(E, value(invoice-no, R), T).
initiates(E, DELIVEROBLIG(R, T+300), T) « initiates(E, value(invoice-no, R), T).
initiates(E, owns(owner:C, item:I), T) «

holdsAt (value(invoice-no, R), T) A initiates(E, fulfilled(PavOBLIG(R, _))).

terminates(E, owns(owner:V, item:I), T) «
holdsAt (value(invoice-no, R), T) A initiates(E, fulfilled(PavOBLiG(R, _))).

authoritative(V, value(invoice-no, _)),
authoritative(VB, Paip(_)).
authoritative(CB, Paip(_)).
authoritative (DS, DELIVERED(_)).

Fig. 3. Simple Purchase Contract

The first initiates rule, as described above, obliges the vendor to determine
an invoice number and to signal this as an event notification for the contract.
The vendor does this by sending an inform message to the customer (see sections
3 and 4.1). When the invoice number has been notified, the second and third
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initiates rules oblige the customer to concurrently pay within 100 time units
and the vendor to deliver within 300 time units and to signal completion as
contract related events.

The last initiates and the only terminates rule indicate that the customer
will become the new owner of the item when the payment obligation has been
fulfilled.

The authoritative clauses indicate which agents are authoritative for which
fluents. The concept is related to controllable propositions[7] — the difference
being that in our work the controlled proposition is limited in scope to a specific
contract, rather than to the entire agent society. In the example, only the vendor
has the authority to notify an invoice number. A notification by the customer
would not be considered a contract event.

This mechanism is also useful to identify trusted-third parties: the banks are
authoritative for the paid fluents (that is any payment from customer to vendor)
and the delivery agent is authoritative for the proof of delivery fluent. An agent
that is not authoritative for a fluent may attempt to communicate it, but the
communication would have no effect in this contract.

2.2 Long-term Contracts

It is useful to agree a contract about what contracts may be agreed in the future.
In Figure 4 we give an example standing contract specifying prices for rolls of wire
mesh, fixing screws and sheets of tin roofing. The vendor agent is constrained
by the standing contract to accept any purchase proposals matching the agreed
criteria. The purchase proposal is a reference, by means of the contract label, to
the simple purchase contract presented above.

customerVendorContract (customer:C, vendor:V |

vendorBank:VB, customerBank:CB, deliveryService:DS) {

initiates(E, oblig(V, do(X, replyTo(X, E)), T+100), T) «
proposeEvent(E, C, V, _).
initiates(E, oblig(V, do(X, acceptEvent(X, E), T+100), T) «
proposeEvent(E, C, V,
customerVendorContract_purchase(customer:C, vendor:V |
vendorBank:VB, customerBank:CB,
deliveryService:DS, item:I, price:P)) A
agreedPrice(item:I, price:P).

agreedPrice(item:wiremesh(width:10, height:10, gauge:10), price:10.00).
agreedPrice(item:fixingscrews(gauge:5, amount:1000), price 6.99).
agreedPrice(item:tinroofing(width:6, height:9), price 4.00).

}

Fig. 4. Standing Contract

The first initiates rule specifies that the vendor must reply to proposals
(of any kind) from the customer within 100 time units. The important syntax
here is the do(...) notation which indicates that the agent must bring about an
event satisfying a particular constraint. In this case the event must satisfy the
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replyTo constraint, meaning that it must be a valid reply to the accept event (i.e.
an accept or a reject). The following section defines the replyTo, proposeEvent
and acceptEvent predicates, which are common to all agents. Similarly the sec-
ond initiates rule specifies that the vendor must accept proposals meeting the
agreedPrice criterion.

3 Communication

In our system, events are the act of sending messages. The messages are inter-
preted by the agents according to a shared ontology, the domain independent
part of which is described here and in section 4. Only recorded events that are
relevant to a contract may progress the contract state. Real world events, such
as “the car leaving the drive way”, may be put in the context of a contract by
an inform event (or reported event, see below) to that effect.

We require that the events are observed by all contract principals because
the state of the contract depends on the history of events relevant to it. In a two
party contract, this requirement is trivially satisfied when one principal sends a
message to another.

Although the exact format of a message and its transport details will vary
from application to application and agent society to agent society, a well-formed
message should include a time-stamp, a unique message identifier, a field identi-
fying the message to which it is a reply (if any), message sender, message receiver,
a message content, context and the interaction protocol or conversation identi-
fiers. Messages relevant to a contract should include a context field corresponding
to the contract label. This information can be inferred if the received message is
in reply to an earlier message that was properly context-tagged. Figure 5 gives
an example representation of an accept event for the long term contract between
the customer and vendor (see Figure 4).

We list some predicates that can be used in the contract language and agent
code either as tests on received messages, or as constraints on messages about to
be sent (this commonly occurs when an agent is obliged to do a communication
subject to some specified constraints). The predicates are implemented in terms
of constraints on the message attributes above.

contractEvent(E, C) event E is in the context of contract C.

proposeEvent(PE, X, Y, P) PE is a propose event from X to Y for a proposal
P. Proposals take the form of contract labels. Propose events must specify
the propose protocol, which restricts the valid replies to accept or reject
events.

acceptEvent(A, PE) A is an acceptance event in reply to a proposal event, PE.
Accept events must specify the propose protocol. According to the protocol
rules (see replyTo below), there can only be one reply to a proposal, so if
there are any further accept or reject events they should be ignored. The
receiving agent should check the validity of the proposal event.

rejectEvent(R, PE) R is a reject event in reply to a proposal event, PE. Like
acceptEvents, rejectEvents should specify the propose protocol.
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informEvent(IE, X, Y, F) IE is an inform event from X to Y that F is true.
F is normally a fluent. Only agents that are authoritative about the fluent
(see subsection 4.1) may establish it in the context of the contract.

replyTo(R, E) R is a reply to event E. If E specifies a protocol, replyTo con-
strains R to be a valid response in the protocol. R and E must share the same
context and must agree on the protocol attribute. R’s in-reply-to attribute
must equal E’s message identifier.

reportEvent(RE, E) indicates that RE is a report of an actual event E. This is
most useful when E is an inform event from another contract that something
has been achieved. Only events which actually occur may be reported — this
constraint might be enforced by the requiring event senders to digitally sign
their events.

requestEvent(E, A, F) E is a request event for agent A to bring about that F
is true. A successful response is an inform event that F is now true.

accept (
time:20050121144600, identifier:cv123, in-reply-to:cv122,
sender:sales@uwiremeshRus, receiver:jak97@imperial.ac.uk,
content :propose(
time:20050121130100,
identifier:cv122,
sender: jak97Q@imperial.ac.uk,receiver:sales@uwiremeshRus,
content : customerVendorContract (
customer: jak97@imperial.ac.uk, vendor:sales@wiremeshRus,
vendorBank:finance@bankl, customerBank:finance@bank2,
deliveryService:deliver@pforce),
protocol:propose),
protocol:propose) .

Fig. 5. Possible representation of an accept event

4 Contract Evaluation

An agent may have many contracts active at the same time. It is important
to be able to consider the contracts independently of each other (for example
to determine a contract’s state), and also their combined effect (for example
when outsourcing goals). For this reason we define a meta-interpreter predicate,
selon?, which evaluates queries relative to a specified contract. Subsection 4.3
describes how the individual contract effects are combined into the agent’s belief
store.

Figure 6 shows the core of the meta-interpreter. The first parameter is the
contract label, and the second is the formula to be evaluated. The agent can
now query what obligations are current with respect to a contract by asking
selon(C, holdsAt(oblig(A, G, DL), Now)) where Now is a time point representing
the current time and C is the label of an active contract.

The symbols not, A and <« are overloaded. Where they occur in a functional
context (in the second argument to selon), they should be read as functional

2 From the French, selon, meaning ”according to”
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selon(C, happens(E, T)) « happens(E, T) A contractEvent(E, C).
selon(C, happens(start, T)) «— happens(E, T) A
initiates(E, activeContract(C), T).
selon(C, R) « contractClause(C, R «— S) A selon(C, S).
selon(C, P A Q) < selon(C, P) A selon(C, Q).
selon(C, not P) < not selon(C, P).
selon(C, holdsAt(F, T)) « selon(C, happens(E, T1)) A Ti<T A
selon(C, initiates(E, F, T1)) A selon(C, not clipped(T, F, T1)).
selon(C, clipped(TO, F, T1)) « selon(C, happens(E, T)) A TOST A T<T1 A
selon(C, terminates(E, F, T)).

Fig. 6. Contract meta-interpreter

terms; where they occur in a logical context (as part of the definition of selon)
they should be read as logical connectives. Further meta-interpreter rules are
presented below defining the concepts of authoritative agents, reported events
and obligation fulfilment and violation.

4.1 Authoritative Agents

In the simple purchase contract, the vendor was authoritative for the invoice
number. We capture this authority with an extension to the meta-interpreter:

selon(C, initiates(E, F, T)) «
selon(C, authoritative(X, F)) A informOrReportedEvent(E, X, F).

selon(C, terminates(E, G, T)) « selon(C, incompatible(F, G)) A
selon(C, authoritative(X, F)) A informOrReportedEvent(E, X, F).

informOrReportedEvent (E, X, F) « informEvent(E, X, _, F) V
(reportEvent(E, I) A informEvent(I, X, _, F)).

In the simple purchase contract, the delivery agent is authoritative for the
delivery fluent. The delivery agent is not a principal of the contract, however,
so in order for any delivery notification to have effect, it must be reported by
one of the principals (in this case the customer or the vendor). Direct or indirect
reporting of an inform event from the authoritative agent is deemed to be a valid
contract event by virtue of the last rule.

We have borrowed the incompatible predicate, which states which fluents
must be terminated in response to one being initiated, from the original event
calculus|[10].

4.2 Obligation Fulfilment and Violation

We adopt a similar semantics to Dignum et al.[6] with respect to deadlines. An
obligation is fulfilled if the deadline has not yet expired. If the obligation was
to achieve a state of affairs represented by a fluent fulfillment has to have been
notified by an event that initiates the contract fluent. Where it was a more direct
obligation to bring about an event characterized by a constraint, that the event
has occurred is checked by showing that the constraint is now satisfied.

174



An obligation is violated if the deadline has elapsed and it has not been
fulfilled. For simplicity’s sake, we omit rules allowing a violation to be repaired
(by meeting its sanction). We need three meta-interpreter rules to capture this:
two for achieve and do fulfilment and one for violation.

selon(C, initiates(E,
fulfilled(oblig(X, achieve(F), DL)), T)) «
selon(C, holdsAt(oblig(X, achieve(F), DL), T)) A
T<DL A selon(C, initiates(E, F, T)).
selon(C, initiates(E,
fulfilled(oblig(X, do(E, Constraint), DL)), T)) «
selon(C, holdsAt(oblig(X, do(E, Comstraint), DL), T))
A T<DL A selon(C, Constraint).
selon(C, violated(oblig(X, G, DL), T)) «
selon(C, holdsAt(oblig(X, G, DL), T)) A DL<T A
not selon(C, holdsAt(fulfilled(oblig(B, G, DL)), T)).

4.3 Imported Fluents

Event calculus is used not only within the contract language definition, but also
by the agent at the top-level to manage its beliefs. We need some rules to model
that certain contracts have effects on the agent society outside of the contract
itself. An example of this is the simple purchase contract which concludes with
the transfer of ownership of the item from the vendor to the seller: reasoning
solely with respect to the purchase contract will not allow the agent to realise
that it does not own the item after selling it in the future. Since we need to
track the ownership changes over the course of several contracts, we pool the
ownership fluent into the agent’s own belief store:

initiates(E, F, T) « importedFluent(F) A
holdsAt (activeContract(C), T) A selon(C, initiates(E, F, T)).

terminates(E, F, T) « importedFluent(F) A
holdsAt (activeContract(C), T) A selon(C, terminates(E, F, T)).

importedFluent (owns(_, _)).
importedFluent (activeContract(_)).

The importedFluent predicate selects which contract fluents should be im-
ported into the agent’s belief store. activeContract is a fluent predicate indicat-
ing which contracts are active. Marking it as an imported fluent allows contracts
to spawn sub-contracts.

5 Agent Architecture

We now describe an agent architecture in the style of AgentSpeak(L) to enable
agents to respond to events related to all their active contracts in a timely
fashion. We give a brief introduction to a simplified version of AgentSpeak(L),
and then propose a plan library for the customer agent that will allow it to make
use of the standing and purchase contracts. AgentSpeak(L) is chosen as a basis
because it has a well understood operational semantics and there are available

implementations such as [16] and [4].
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5.1 AgentSpeak(L)

An AgentSpeak(L) agent architecture can be viewed as multi-threaded event-
triggered interruptible logic programming system [11].

There are two kinds of events, belief updates and new goal events. Belief
updates are represented as +b or -b depending on whether the particular belief,
b, is now true or false. Belief events model the changes in the environment as
perceived by the agent. New goal events are represented as +!g, where g is the
goal to achieve.

At the beginning of the agent cycle, the agent picks an event to handle from
the set of unhandled events. The plan library is consulted to see if there are
any plans that are triggered by the event. Each plan in the plan library has the
syntax: event:condition <- actiomns.

For example, +temperature(T) : T > 90 <- switch(heater, off). is a plan
from an environmental control agent. The plan is relevant to changes in temper-
ature, and applicable when the temperature rises beyond 90 degrees. The action
is to switch the heater off.

If the event in the head of the plan unifies with the selected event, the plan
is said to be relevant. The condition is a formula in terms of the current beliefs
of the agent and acts as a guard: the relevant plans whose condition formula
evaluates to true are said to be applicable. Finally, one plan is selected from the
applicable plans and an intention is created to monitor it.

The agent then picks an intention to execute, which involves executing the
plan body (actions) one step at a time. A step may be either a physical action,
an achieve goal (written !goal) or a test (written 7test).

Goal achievement is handled by suspending the intention and adding a new
goal event to the set of unhandled events. Future agent cycles will pick up the
new goal event, and look in the plan library (as before) for an applicable plan
to achieve it. The plan is then stacked on top of the intention that issued the
achieve goal action, so that once the goal has been achieved, execution of that
intention may continue.

Tests are queries to the agent belief store, and result in a set of variable
assignments which are substituted into the remaining plan steps.

5.2 Extensions to AgentSpeak(L)

We extend the AgentSpeak(L) in the following ways:

— Plans may include belief update steps, of the form +b or -b. This effects the
belief store of the agent in a similar way to Prolog’s assert and retract.

— An agent may have an initial set of desires, which can be selected and posted
as new goal events.

— In the example plan libraries below, we have also included some Prolog style
horn clauses to ease readability. Since these definitions can be folded directly
into the AgentSpeak(L) rules, they do not affect the operational semantics.

— “Fire and forget” goal execution, written !!goal. Instead of stacking the plan
for the goal on top of the existing intention, create a separate intention for
the achievement of the goal. This is useful when the agent requires simply
to start off a process to achieve a goal, but not to wait for its achievement.
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— The textually first applicable plan is selected if there is a choice and the
agent commits to that plan.
— We implement the following physical actions:
notify sends a message to all the principals of a given contract (see section
3), and logs it as a communication event.
waitReply waits for a reply to a given notification message to be received,
subject to a timeout.
waitContractEvent waits for an event that is relevant to the specified con-
tract. This is either an incoming communication event, or the lapsing of
any of the current obligations’ deadlines.
fail abandons an executing plan and marks it as failed.

5.3 Meta-information about Contracts

Instead of writing a set of plans to address specific contracts, such as customer-
VendorContract, we can write plans that address a general class of standing and
purchase contracts. We do this by abstracting common behaviour into agent-
specific meta-information about the contracts. We define a binary relation isa
which is true iff a particular contract belongs to a more general class of con-
tracts. The schematic rules below we say that customerVendorContract_purchase
as an instance of purchaseContract and customerVendorContract as an instance of
standingContract that can be used to create new customerVendorContract_purchase
contracts, so long as the item and price information match up with the agreed
prices in the standing contract.

customerVendorContract_purchase(X) isa purchaseContract(X).
customerVendorContract (Y) isa standingContract(PC) :-
PC isa purchaseContract(Y, item:I, price:P)
selon(customerVendorContract (Y), agreedPrice(item:I, price:P)).

It is also useful to know when a contract is complete. This is dependent on
the specific type of contract. For example, the standing contract above is open
ended - it is never completed, whereas the purchase contract ends successfully
with ownership of the item. complete is a binary predicate, first argument is the
contract and the second argument is the time of evaluation.

complete(PC, T) :-
PC isa purchaseContract(customer:C, _, item:I, _, _, _, _),
selon(PC, holdsAt(owns(owner:C, item:I), T)).

5.4 Plan Library for Contract Execution

We now describe a plan library for executing arbitrary contracts. For each active
contract, C, the agent must ensure that there is an intention to abide by it, by
invoking a plan for the goal monitor(C).

In the case of the vendor, we assume an initial desire to abide by their
standing contract, which will result in the goal to monitor it. However, as this
standing contract does impose any obligations on the customer agent, it is not
necessary for that agent to actively monitor it. As we shall see, the customer
may instead make use of the contract to achieve an ownership goal by creating
an active purchase sub-contract that it will monitor.
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+!monitor(C): now(Now) & complete(C, Now) <- true.
+!monitor(C): now(Now) & selon(C, holdsAt(oblig(Self, G, DL), Now)) &
not (observed(C,oblig(Self, G, DL)))
<- +observed(C,oblig(Self, G, DL)) ; !G by DL in C ;
'monitor(C).
+!monitor(C): now(Now) & selon(C, holdsAt(fulfilled(Oblig), Now)) &
not (observed(C,fulfilled(Oblig))
<- +observed(C,fulfilled(0blig)) ; !obligFulfilled(C, Oblig);
Imonitor(C) .
+!monitor(C): now(Now) & selon(C, violated(Oblig, Now)) &
not (C,observed(violated(0Oblig)))
<- +observed(C,violated(0Oblig)); !obligViolated(C, Oblig) ;
'monitor(C).
+!monitor(C): true <- waitContractEvent(C) ; !'monitor(C).

The conditions of the above plans query the state of the contract using
the selon predicate. The now predicate gives the current time. When the con-
tract is complete, as defined by the complete predicate in the contract meta-
information, the first rule is applicable and the execution plan terminates.

The second rule states that if there is a new obligation on the agent, a goal
of the form G by DL in C is posted. This goal event will be handled by other
plans in the plan library (see customer and vendor agent’s plan libraries below).
When the plan to achieve the goal completes, the monitor(C) goal is reposted to
carry on contract execution.

The third and forth rules monitor the contract for obligation fulfilment and
violation. obligFulfilled and obligViolated goals are posted, which may be
handled elsewhere in the agent’s plan library to keep track of, for example, the
reliability and reputation of the contract participants.

The last rule states that if the contract is not yet complete, the agent waits
for a communication event or for the earliest outstanding obligation deadline
to lapse before consulting the contract again. Although the condition of the
last plan is always true, our plan selection function selects the textually first
applicable plan.

5.5 Plan Library for Customer Agent

The role of the customer agent is to respond to desires to own an item. These
desires are manifested by achievement goals, which gives rise to intentions to
satisfy them. We show how the agent may make use of standing contracts (or
other means of achieving ownership) in an example plan library.

+!lowns (owner:Self, item:I)
now (Now) & not(holdsAt(owns(owner:Self, item:I), Now)) &
holdsAt (activeContract(SC), Now) &
SC isa standingContract(PC) &
PC isa purchaseContract(customer:Self, vendor:V, item:I, price:P,
vendorBank:VB, customerBank:SelfBank, deliveryService:DS) &
reliable(V), reliable(DS) &
fairPrice(item:I, price:P)
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<- ?proposeEvent (Proposal, Self, V, PC) ;
notify(SC, Proposal) ;
waitReply (Reply, Proposal, Now + 100) ;
lenact (Reply, Proposal).

+lenact (timedOut, Proposal) : true <- +noResponseTo(Proposal).

+!enact (Reply, Proposal) : rejectEvent(Reply, Proposal) &
rejectEvent (Proposal, Self, V, _) <- +rejected(Proposal).

+lenact (Reply, Proposal) : acceptEvent(Reply, Proposal) &
proposeEvent (Proposal, Self, V, PC) <- !monitor(PC).

The plan above is applicable to the goal of achieving ownership of a particular
item, if the agent does not already own it, and there is an agreed standing
contract mandating an acceptable price for the item with a (believed) reliable
vendor and delivery service. The plan body constructs a proposal event and
sends it to the vendor in the context of the standing contract, waits for a reply
and then acts on that reply. The vendor agent is obliged to respond with an
accept event within 100 time units, and should they fulfill that obligation the
resulting purchase contract will be monitored by the customer. If no response
comes in time, or the proposal is rejected, a belief to that effect is stored effecting
the customer’s future reliability estimate of the vendor.

There is only one possible obligation on the customer arising from the pur-
chase contract, and that is to pay for the item. We make the simplifying assump-
tion that the customer has enough money in his account:

+lachieve(paid(payer:Self, payee:V, price:P, reference:R)) by DL in PC :
now(Now) & holdsAt(activeContract(BC), Now) &
BC isa bankContract(customer: C, bank:B)

<- ?requestEvent (Request, SelfBank, paid(payer:C, payee:V, price:P,

reference:R)) ;

notify(BC, Request) ; waitReply(Reply, Request, Now + 100);
?reportEvent (Report, Reply);
notify(PC, Report).

After instructing the bank to transfer the money (in the context of the con-
tract between the customer and their bank), the customer waits for an acknowl-
edgement that this has been done and forwards it to the vendor in the context
of the purchase contract. It is this reported event that causes the paid fluent
to become established, and consequently for the customer to have fulfilled the
payment obligation to the vendor (see section 4.1).

5.6 Plan Library for Vendor Agent
The following plan library enables the vendor to accept and reject proposals for
purchase contracts. If the vendor is obliged to accept it, then by the generic

contract execution plan library, a goal will be posted to of the form do(X,
acceptEvent (X, E)) by DL in SC which is handled by the plan below.

+!do(X, acceptEvent(X, E)) by DL in SC: proposeEvent(E, C, Self, Proposal)
<- 7acceptEvent (X, E) ; notify(SC, X) ; !!monitor(Proposal).
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The condition of this plan extracts the proposed contract from the content
of the message, and the plan body constructs an accept event and sends it the
customer in the context of the standing contract. A separate intention is then
created to monitor the proposed contract. The plan for rejecting a proposal is
similar, except no intention is created to monitor the proposed contract.

Now we consider that the standing contract also obliges the agent to reply to
a proposal even if it is not obliged to accept it. We define two auxiliary predicates
obligedToAccept which is true iff the vendor is obliged to accept the proposal,
and shouldAccept which is true iff the it is in the vendor’s interest to accept the
proposal. shouldAccept includes checks like there is available stock, taking into
account already committed stock, and that the proposed price of the item is at
least twice the cost price.

obligedToAccept(SC, E, T) :-
selon(SC, holdsAt(oblig(Self, do(X, acceptEvent(X, E)), DL), T)).

shouldAccept (Proposal, T) :-
Proposal isa purchaseContract(customer:C, vendor:Self | price:P,
vendorBank:SelfBank, customerBank:CB, deliveryService:DS),
costPrice(item:I, price:CostPrice),
warehouse(item:I, availability:Warehouse),
committed(item:I, level:Committed),
Warehouse - Committed > O,
P >= CostPrice * 2.

The following two plans make use of the predicates to decide whether to
accept or reject the proposal. The plan bodies are simply goals to accept or
reject which will be handled by the plans as the start of this subsection.

+!do(X, replyTo(X, E) by DL in SC: proposeEvent(E, C, Self, Proposal) &
now(Now) & shouldAccept(Proposal, Now) &
not (obligedToAccept(SC, E, Now))

<- +!do(X, acceptEvent(X, E)) by DL in SC.

+!do(X, replyTo(X, E) by DL in SC: proposeEvent(E, C, Self, Proposal) &
now(Now) & not(shouldAccept(Proposal, Now)) &
not (obligedToAccept (SC, E, Now))

<- +!do(X, rejectEvent(X, E)) by DL in SC.

There are two obligations that may result on the vendor during execution of
the purchase contract. The first is an obligation to announce an invoice number,
and the second is to arrange for delivery of the item.

+lachieve(value(invoice-no, _)) by DL in PC : true
<- -invoiceNo(Last) ;
?New is Last + 1; +invoiceNo(New) ;
?informEvent (E, Self, value(invoice-no, New)) ; notify(PC, E).

To achieve a fresh value for the invoice number, the vendor increments a
belief atom, invoiceNo, and then creates an inform event asserting its value to
send to the customer in the context of the purchase contract, PC.
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+lachieve(delivered(item:I, destination:C, invoice-no:R)) by DL in PC :

PC isa purchaseContract(customer:C, vendor:Self | price:P,
vendorBank:SelfBank, customerBank:CB, deliveryService:DS) &

now(Now) & holdsAt(activeContract(DC), Now),
DC isa deliveryContract(customer:V, deliveryService:DS)

<- ?requestEvent (Request,DS,delivered(item:I,destination:C,invoice-no:R)) ;
notify(DC, Request) ; waitReply(Reply, Request, Now + 100) ;
?reportEvent (Report, Reply) ; notify(PC, Report).

The vendor agent has no built-in capability to achieve delivery, so it must
make use of a third party. The above plan checks that its has an active contract,
DC, with the delivery service DS mentioned in the purchase contract (which we
assume it will have).

The vendor must create a request event to achieve the delivery and sent it
to DS in the context of DC. If successful, the delivery service will reply with
an inform that the item has been delivered, which is then forwarded by the
vendor to the customer in the context of the purchase contract, thus fulfilling
the vendor’s obligation to deliver the item.

6 Related Work

Our architecture shares the concepts of plan library, beliefs, intentions with
AgentSpeak(L). The addition of contracts not only reifies the concept of obli-
gations, but also extends the built-in behaviour of the agent by allowing it to
outsource goals that it cannot achieve itself.

In Agent0[13], agents are programmed by specifying a set of capabilities
(commitment rules). Instead of building the commitment rules directly into the
agent, our architecture allows these rules to be specified in the contract in the
form of event calculus initiates and terminates rules.

Verharen’s cooperative information agents [14] [15] are based on the language
action perspective. The architecture specifies three main categories of activities:
tasks (plans to achieve tasks organised with dependencies between the tasks),
transactions (message sequences organised with temporal ordering constraints),
and contracts, which are represented as deontic state machines of transaction
transitions. Our system does not mandate such a conceptual break down, rather
we envisage that higher level contract languages may be translatable into our
simpler event calculus syntax.

Social integrity constraints[1] can be used to specify and verify agent inter-
action protocols. The constraints express expectations on events that ought to
(or ought not to) occur given the occurrence of a previous triggering event. Each
expectation has an associated priority such that those with higher priority are
more ideal. The concept is related to obligations, but their focus is different:
social integrity constraints focus essentially on constraining the event history,
whereas obligations focus on constraining a particular agent behaviour. It would
be an interesting to attempt the expression of the one in terms of the other.

Artikis et al[2] describe a system for animating and specifying computational
societies. The system takes a global perspective, and so in order to make infer-
ences about the state of the society all the events relevant to it must be known.
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This is in contrast to our work, where conclusions are reached relative to each
contract rather than the society as a whole.

Kollingbaum and Norman describe a system of supervised interaction|8]
where agents are supervised by a third party called an authority. The authority
registers contracts between the agents, witnesses the communications between
the agents and enforces the norms specified in the contracts. Our system does
not require this infrastructure, although it does admit a logging agent should
the particular situation demand it. Furthermore the agents themselves are re-
sponsible for enforcing the contractual norms.

It is important that the contract is carefully constructed so that prohibitions
do not completely prevent the fulfillment of obligations. It is feasible to statically
check contracts for these kinds of potential conflicts[3]. The NoA architecture[9)
solves conflicts by prioritising permissions over prohibitions — obligation con-
sistency is determined by considering the action effects of plans to handle the
obligation. If all plans include actions that are prohibited or interfere with other
obligations, the obligation is found to be inconsistent and is not adopted.

Conflicts between obligations and desires may also emerge, and if so conflict
resolution will be important. The BOID architecture[5] describes a method of
resolving these conflicts. Beliefs, obligations, intentions and desires are repre-
sented as separate components with feedback loops between them. Each compo-
nent builds extensions (closure under logical consequence) of their propositional
theories, and conflicts between the components are resolved by prioritising the
components one over the other.

7 Conclusion

Contracts are a powerful and high level approach to programming agent be-
haviour. Furthermore, specifying the contractual relationships between agents
separately to the agents’ capabilities is not only good software engineering, be-
cause concerns are separated, but also facilitates analysis and verification since
the contracts are represented in a formal language, the event calculus. Event
calculus is especially suitable for contract language representation because the
semantics are unambiguous and, given a reliable log of events, the conclusions
derived cannot be disputed.

Finally, our agent architecture provides a simple, powerful, extensible means
to implement passive (by monitoring fulfilment and violation of obligations),
reactive (by reacting to new obligations), proactive (by taking advantage of con-
tracts to oblige other agents) and opportunistic (by accepting proposals that are
in the agent’s interest, but not necessarily obliged to accept) behaviours.
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Profiles of Behaviour for Logic-Based Agents
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Abstract. In an earlier paper [6] we presented a declarative approach for agent
control. In that work we described how control can be specified in terrogadé
theories which define declaratively the possible alternative behaviours of agents,
depending on their internal state and (their perception of) the external environ-
ment in which they are situated. This form of control has been adopted for logic-
basedKGP agentd8, 2]. In this paper we show how using this form of control
specification we can specify differepitofilesof agents, how they would vary the
behaviourof agents and what advantages they have with respect to factors in the
application and in the environment, such as time-criticality.

1 Introduction

In an earlier paper [6] we described how to specify control of agents via cycle theo-
ries. The approach is based on representing and reasoning with preferences and allows
flexible control of the operations of agents. This takes the control beyond a fixed one-
size-fits-all approach and allows the operations of the agents to be chosen dynamically
given the circumstances of the environment, the state of the agent and its preferences.
Cycle theories have been adopted as the means of control in the KGP agent model [8, 2]
developed within the SOCS projectKGP is a modular logic-based model developed

to cater for the challenges of open global computing environments. It relies upon a
collection of capabilities utilised within transitions controlled by cycle theories. All

the components are defined within computational logic, some using abductive logic
programming and others using logic programming with preferences. The capabilities
are designed to provide functionalities such as planning, reactivity, temporal reasoning
and goal decision, all of which have been envisaged useful, maybe even necessary,
for coping and adapting in a dynamic open environment. The KGP model has been
implemented within the PROSOCS platform [12].

The behaviour of KGP agents can be seen as the sequence of transitions or operations
they perform, and this sequence is determined by the agents’ cycle theories. Thus by
varying the cycle theory one can vary the behaviour of the agent. We have explored
a number of such variations resulting in different profiles of behaviour. In an earlier
paper [6] we briefly mentioned three, the focussed, careful and impatient profiles. In
this paper we detail the first two. We characterise them formally, show how to design
cycle theories that achieve them and discuss their advantages depending on the features
of the environment and application domains. Other profiles are described in [1].

! http://lia.deis.unibo.it/Research/Projects/SOCS/



The motivation for this work is threefold: 1) to explore the degree of heterogeneity that
can be achieved by varying cycle theories; 2) to explore the advantages of different
profiles of behaviour with respect to different parameters such as the dynamic nature
of the environment and the time-critical nature of applications; 3) to explore how such
analysis can provide guidelines for implementers who use the PROSOCS platform.
Environments and circumstances in which agents have to function can vary. Some en-
vironments can be fairly static and predictable, while others can be highly dynamic
and unpredictable. Agents may or may not have strict deadlines for their activities, and
agents’ resources may be limited, thus constraining what they can do, or they may have
few resource restrictions. What interests us in this paper is to explore what profiles of
behaviour would be advantageous in what type of environment and under what circum-
stances. Moreover, we would like to explore how to define such profiles by varying the
control strategies of agents defined via cycle theories.

The paper is organised as follows. In Section 2 we present two examples to motivate
the careful and focussed profiles. In Sections 3 and 4 we describe the necessary back-
ground to our work. In Section 5 we describe the careful and the focussed profiles in
detail, show the characteristics of cycle theories that provably achieve these profiles,
and discuss the pros of the two behaviour profiles. In Section 6 we conclude.

2 Motivating Examples

In this section we motivate, in the context of concrete examples, the two profiles we
will study and formally define later, in Section 5.

2.1 Careful profile

Intuitively an agent endowed with this profile frequently re-examines its commitments

to ensure that he honours only those that are feasible and necessary and he is not encum-
bered by any infeasible or unnecessary commitments. The advantage of such a profile
is evident in a dynamic, unpredictable environment.

Consider an agertwho has sent its registration form to a confereagef05 and thus
believes that it has registered for the conference. But it now wishes not to be registered
at the conference. It sets itself this goal, and plans for it by generating an action to
cancel his registration abn f05. Suppose the agent knows that :

If it observes that the deadline for cancellation for a conference has reached
and it expects to cancel its registration at the conference then it should contact
its bank and tell them to stop its credit card payment to the conference.

Suppose before it has a chance to execute the action of cancellation of its registration it
receives a message from the conference secretary telling it that there was a problem with
its initial attempt at registration (for example the registration form arrived corrupted)
and so it is actually not registered.

An agent with the careful profile will immediately realise that there is no longer any
need to cancel its registration and consequently will not contact its bank to tell them to
stop the credit card payment. But, under the same circumstances, an agent with a differ-
ent profile might execute the (unnecessary) acts of contacting the bank and canceling
the payment.
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2.2 Focused profile

An agent may attempt to plan for multiple goals at once or may plan for one goal at
a time. If the agent has limited resources it may be better off trying one goal at a time
because typically it may not have enough resources for achieving multiple goals, and
attempting to do so would only lead to time-wasting failures. This is the motivation
behind our focussed profile. An agent endowed with the focussed profile focuses on
one goal at atime.

Suppose an agent has two goals, one to have a particular book and the other to have
a particular CD. Suppose the book cof1®) and the CLCEL5, and the agent h&20
available to spend. This agent cannot achieve both its goals, because due to its financial
constraints it cannot form a consistent plan that would achieve both goals. If the agent
has the focussed profile it will achieve one of them but if it has any other profile it may
not achieve either goal.

In the next two sections we give the background that is necessary in order to formally
define the profiles and show their consequences in terms of the behaviour of agents.

3 The KGP Model of Agency

Here we briefly summarise the KGP model for agents. Formal details can be found in
[8, 2]. This model relies upon
— aninternal (or mental) state
— a set ofreasoning capabilitiesin particular supporting planning, temporal reason-
ing, reactivity and goal decision,
— asensing capabilityallowing agents to observe their environment and actions by
other agents,
— a set oftransition rules defining how the state of the agent changes, and defined in
terms of the above capabilities,
— a set ofselection functiongo provide appropriate inputs to the transitions,
— acycle theoryfor deciding which transitions should be applied when, and defined
using the selection functions.

Internal state. This is a tuple{K B, Goals, Plan, TCS), where:

— KB is the knowledge base of the agent, and describes what the agent knows (or
believes) of itself and of the environmeif.B consists of various modules support-
ing the different reasoning capabilities of agents, and includirigy,, for holding
the (dynamic) knowledge of the agent about the external environment in which it is
situated.

— Goals is the set of properties that the agent wants to achieve, each one with an
associate time variable, possibly constrained by temporal constraints (belonging to
TCS), defining when the goals are expected to hold.

— Plan is a set of actions scheduled in order to satisfy goals. Each has an associated
time variable, possibly constrained by temporal constraintBars, similarly to
Goals, but defining when the action should be executed and imposing a partial
order over actions iPlan. Each action is also equipped with the preconditions for
its successful execution.
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— TCSis a set of constraint atoms (referred td@®poral constrainfsin some given
underlying constraint language with respect to some structure equipped with a no-
tion of Constraint SatisfactionWe assume that the constraint predicates include
<, <, >, <,=,#. These constraints bind the time of goalsGiaals and actions
in Plan. For example, they may specify a time window over which the time of an
action can be instantiated, at execution time.

Goals and actions are uniguely identified by their associated time variable, which is
implicitly existentially quantified within the overall state.

To aid revision and partial plannin@oals and Plan form atree?. The tree is given im-
plicitly by associating with each goal and action its par@op-levelgoals and actions

are children of the root of the tree, represented by the (arbitrary) symbol

Reasoning capabilities. These include:

— Planning, generating a plan, if one exists in the overall state, for any given set of
input goals. These plans apartial or total. A partial plan consists of (temporally
constrained) sub-goals and actiongofal plan consists solely of (temporally con-
strained) actions.

— Reactivity, reacting to perceived changes in the environment by modifyings,

Plan, andTCS.

— Goal Decision, revising the top-most level goals by adapting the agent's state to
changes in its own preferences and in the environment.

— Temporal Reasoning, reasoning about the evolving environment, and making pre-
dictions about properties holding in the environment, based on the partial informa-
tion the agent acquires.

Transitions. The state of an agent evolves by applying transition rules, which employ
capabilities and the Constraint Satisfaction. The transitions are:

— Goal Introduction (GI) changing the top-level goals, and using Goal Decision.

— Plan Introduction (PI) changingGoals and Plan, and using Planning.

— Reactivity (RE)changingGoals and Plan, and using the Reactivity capability.

— Sensing Introduction (SlthangingPlan by introducing new sensing actions for
checking the preconditions of actions alreadyPiun, and using Sensing.

— Passive Observation Introduction (POthangingK B, by introducing unsolicited
information coming from the environment, and using Sensing.

— Active Observation Introduction (AQIghangingK By by introducing the outcome
of (actively sought) sensing actions, and using Sensing.

— Action Execution (AE)executing actions, and thus changikid3.

— State Revision (SRjevisingGoals and Plan, and using Temporal Reasoning and
Constraint Satisfaction.

2 In the detailed model we actually have two trees, the first containimgreactivegoals and
actions, the second containingactivegoals and actions. All the top-level non-reactive goals
are either assigned to the agent by its designer at birth, or they are determined by the Goal
Decision capability, via the Gl transition (see below). All the top-level reactive goals and
actions are determined by the Reactivity capability, via the RE transition (see below). Here for
simplicity we overlook the distinction amongst the two trees.
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The effect of transitions is dependent on the concrete time of their application. We
briefly describe SR, as it will play an important role in section 5. Informally speaking,
SR revises a state by removing (i) all timed-out goals and actions, (ii) all executed
actions, (iii) all goals that have become obsolete because they are already believed to
have been achieved, (iv) siblings (in the tree) of goals and actions deleted in (i), and
(v) all descendants (in the tree) of goals deleted in (i)-(iv). A goal or actidimisd-

outif and only if the temporal constrainfSC'S of the state of the agent at the time of
application of SR constrain the time of the goal or action to be less than or equal to the
time of application of SR. A goal iachievedn a state if and only if it holds according

to the Temporal Reasoning capability.

Selection functions. Input to (some of the) transitions is given via selection functions,
taking the current stat€ and timer as input:

— action selection functiare 45 (S, 7), returning the set of actions #to be executed
by AE at timer;

— goal selection functiaregs (S, 7), returning the set of goals ifi to be planned for
by Pl at timer;

— fluent selection functigr 5 (S, 7), returning the set of properties fto be sensed
by AOI at timeT;

— precondition selection functiorps(S, 7), returning the set of preconditions of
actions inS for which sensing actions are to be introduced by Sl at time

4 Cycle Theories

The behaviour of agents results from the application of transitions in sequences, re-
peatedly changing the state of the agent. These sequences are not fixed a priori, as in
conventional agent architectures, but are determined dynamically by reasoning with
declarative cycle theories, giving a form of flexible control. Cycle theories are given in
the framework of Logic Programming with Priorities (LPP). For the purposes of this
paper, we will assume that afPP-theory referred to ag, consists of four parts:

(i) alow-level partP, consisting of a logic program; each rulefiris assigned a name,
which is a term; e.g., one such rule, with nanieX), could be
n(X) : p(X) — g(X,Y),r(Y)

(ii) ahigh-level partd, specifying conditional, dynamic priorities amongst rule$’in
e.g., one such priority rule, calléd X'), could beh(X) : n(X) = m(X) « ¢(X),
to be read: if (some instance of) the conditigX ) holds, then the rule i with
name (the corresponding instance®f)X ) should be given higher priority than the
rule in P with name (the corresponding instance @f)X ).

(i) an auxiliary partA, defining predicates occurring in the conditions of ruleg’in
and H and not in the conclusions of any rule i)

(iv) a notion of incompatibility, here given as a set of rules defining the predicate
incompatible, e.g.incompatible(p(X),p’'(X)), to be read: any instance of the
literal p(X) is incompatible with the corresponding instance of the litpféK).
We refer to the set of all incompatibility rules &s
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Any concrete LPP framework is equipped with a notion of entailment, that we denote
by |=pr. Intuitively, T =« iff « is the “conclusion” of a sub-theory @ U A which is
“preferred” with respect tdf U A in 7 over any other sub-theory é¢f U A that derives

a “conclusion” incompatible witlax (with respect td’). Here, we are assuming that the
underlying logic programming language is equipped with a notion of “entailment” that
allows to draw “conclusions”. In [10, 9, 7, 5, 3}, is defined via argumentation.

Formalisation of Cycle theories. Here and in the rest of the paper, we will use notation
T(S,X,S’, ) to represent application of transitidhat timer in stateS, given input

X, resulting in stateS’, and notation«T'(.S, X) to represent that transitidfi can be
potentially chosen as the next transition in stéfevith input X .

Formally, a cycle theor{,,.;. consists of the following parts.

— Aninitial partZ;,;:a1, that determines the possible transitions that the agent could
perform when it starts to operate. Concret@ly,;+;.; consists of rules of the form
*T'(Sp, X) — C(Sp, 7, X),now(r)
which we refer to via the nanR(So, X ). These rules sanction that, if condi-
tions C hold in the initial stateS, at the initial timer, then the initial transition
could beT’, applied to state, and inputX.
— A basicpart7,,s;. that determines the possible transitions following given transi-
tions, and consists of rules of the form
«T'(S", X") —T(S,X,5,7),EC(5, 7", X"), now(r")
which we refer to via the nam& 1 (S’, X'). These rules sanction that, after
transitionT' has been executed, starting at timén the stateS and resulting in
stateS’, and the condition&C' evaluated inS’ at the current time’ are satisfied,
then transitioril” could be the next transition to be appliedSf with input X”.
EC are callecenabling conditiongs they determine wheFR can be applied after
T. They also determine input’ for 7", via calls to selection functions.
— A behavioumpartZycnqvionr that contains rules describing dynamic priorities amongst
rules in7y,sic aNdZ;nitia1- RUIES INTyehqviour @re of the form
RT|T/(S, X/) >—RT|T//(S, X//) <—BC‘(S7 X/, X”, 7'), TLO’LU(T)
with T # T, which we will refer to via the nam@7.. ;... Recall thatR 17 (-)
andRy () are (names of) rules ifyqsic U Zinitiar- NOte that, with an abuse of
notation,T" could be 0 in the case that one such rule is used to specify a priority over
thefirst transition to take place, in other words, when the priority is over rules in
Tinitial- These rules iy naviour SANCtion that, at the current timeafter transition
T, if the conditionsBC hold, then we prefer the next transition to BeoverT”.
The conditionsBC are callebehaviour conditionand give the behavioural profile
of the agent.
— An auxiliary partincluding definitions for any predicates occurring in the enabling
and behaviour conditions.
— An incompatibility part in effect expressing that only one (instance of a) transition
can be chosen at any one time.

HenceZycle isan LPP'theory where: (B = Znitialuﬂasica and (“)H = %ehaviour-
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Operational Trace. The cycle theoryl., ;. of an agent is responsible for its behaviour,
in that it induces aoperational traceof the agent, namely a (typically infinite) sequence
of transitions
T1(507X1, Sl,Tl), ce ,Ti(Sifl,Xi, Si,Ti), Ti+1<Si>Xi+17 Si+177—i+1>; cee
such that
— Sy is the given initial state;
— for eachi > 1, 7; is given by the clock of the system; (< 7,,);
- (Zycle - %asic) A now(ﬁ) ):pr *TI(S()a Xl)a
— foreachi > 1
(Teyete — Tinitiat) N Ti(Si—1, Xi, Si, 1) Anow(Tiv1) Fpr *Tig1(Si, Xiy1)
namely each (non-final) transition in a sequence is followed by the most preferred tran-
sition, as specified b¥.,;.. If, at some stage, the most preferred transition determined
by [=,- is not unique, we choose one arbitrarily.

Normal cycle theory. In defining profiles in section 5 we take thermal cycle theory

as a starting point. This specifies a pattern of operation where the agent prefers to follow
a sequence of transitions that allows it to achieve its goals in a way that matches an
expected “normal” behaviour. Basically, the “normal” agent first introduces goals (if

it has none to start with) via Gl, then reacts to them, via RE, and then repeats the
process of planning for them, via PI, executing (part of) the chosen plans, via AE,
revising its state, via SR, until all goals are dealt with (successfully or revised away).
At this point the agent returns to introducing new goals via Gl and repeating the above
process. Whenever in this process the agent is interrupted via a passive observation,
via POlI, it chooses to introduce new goals via Gl, to take into account any changes
in the environment. Whenever it has actions which are “unreliable”, in the sense that
their preconditions definitely need to be checked, the agent senses them (via Sl) before
executing the action. Whenever it has actions which are “unreliable”, in the sense that
their effects definitely need to be checked, the agent actively introduces actions that
aim at sensing these effects, via AOI, after having executed the original actions. The
full definition of the normal cycle theory is given in the appendix.

5 Behaviour Profiles

In this section we explore how cycle theories can be used to specify different profiles
of behaviour. We concentrate on two profiles, tiaeefuland thefocussed

In the careful profile the behaviour of the agent is such that it would re-examine its

commitments in terms of its goals and plans frequently to discard those that are no
longer needed or have become infeasible. Intuitively, this profile would be suitable for a
changing environment that intervenes in the agent’s operations, and the frequent "self-
examination” of the agent can help it avoid being occupied with unnecessary activity

or activity which is bound to fail. It also ensures that the agent’s operations are not

hindered by superfluous items in the state and that reactive rules will not be triggered
unnecessarily by goals/actions that are timed-out and not achieved/executed.

With the focussed profile the agent concentrates on one (top-level) goal at a time and
only moves to other goals when that goal is achieved or is timed out. Intuitively this
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profile is useful when the agent has goals that have become mutually unachievable. By
being focussed the agent increases its chances of achieving at least some of them.
Below we proceed to define each of the two profiles by giving a formal definition in
terms of trace characteristics, followed by specification of cycle theories that will in-
duce such traces. We then proceed to prove the advantages of the profile depending on
particular characteristics of the application.

5.1 Careful Profile

Definition 1 (Careful profile: trace-based characterisation).A careful agent is an
agent that will never generate an operational trace with two consecutive transitions
that are different from SR.

In fact, this condition is stronger than strictly necessary: As long as there are no re-
dundant or infeasible goals or actions no revision would be required. However, from
a pragmatic point of view, Definition 1 nevertheless provides us with an appropriate
characterisation of careful agents. This is so, becahsekingwhether or not a state
includes redundant or infeasible goals or actions to be revised is just as costly as per-
forming a state revision in the first place.

Our next goal is to define a class of cycle theories that are guaranteed to induce an
operational trace where every other transition is an SR. As we shall see this is not
as straightforward a goal as it may seem. To illustrate the difficulties and to motivate
our choices (which are eventually going to overcome these difficulties), we start by
attempting to define a careful cycle theory as an extension of the normal cycle theory.

The normal-careful cycle theory. There are several ways of combining cycle theories
(in this case the normal cycle theory with the core rules necessary for characterising the
careful profile). One option would be to take the union of the two cycle theories (which
are sets of basic and behaviour rules) and then, where necessary, to introduce additional
behaviour rules that determine the agent’'s behaviour in case of conflict between the
rules stemming from the different parts. Another way, which gives the profile designer
less freedom but which results in much simpler cycle theories, would be to work at the
level of basic rules as far as possible and to use suitable enabling conditions to control
the agent’s behaviour. This is the approach we are going to follow here.
To design a careful agent, we need to ensure that basic rules expressiBgshauld
follow any other transitiori” get priority over any conflicting rules. Instead of using
behaviour rules to this effect, we are simply going to delete such conflicting rules in the
first place. Hence, we end up with the following approach:

— Step 1:Take the normal cycle theory as a starting point.

— Step 2:Remove any basic rules (ih,.si.) that speak about two consecutive tran-

sitions both of which are different frol @R
— Step 3Add the following basic rule (t@,;.) for eachT different fromSR:

RT|SR(S’, {}) :xSR(S', {}) — T(S,X,S",7)
Note that there cannot be any enabling conditions in this kind of new 8iReteeds
to be enabled undemy circumstances. Note also that Step 3 might re-introduce rules

which already belong t@,, ;.. This causes no theoretical or practical problem. We thus
end up with the followinghormal-careful cycle theory:
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— Tinitiar 1S as for the normal cycle theory.
— Tyasic CONsists of the above rules of the fofy 5z and of the following rules:

Rsripi(S’,Gs) : «PI(S',Gs) — SR(S,{},5",7'),Gs = cas(S’,7),Gs # {}, now(r)
Rsricr(S, {}) : *GI(S',{}) — SR(S,{},5",7"),Gs = cas(S',7),Gs = {}, now(r)

Tvasic dO€S NOt contain any other rules, because all the remaining basic rules in
the normal cycle theory speak about transitions that should follow transitions other
thanSRand these are fixed for the careful profile.

— Thenaviour 1S €Mpty. Indeed, it turns out that also all of the ruleitqvion- iN
the normal cycle theory aredundant because they speak about what to do after a
transition other thasR

In summary, the normal-careful cycle theory will force an agent to alternate be®#en
andPlI or Gl (depending on whether there are currently goals to plan for or not). Such
an agent would be careful, but not very useful. Below we improve the cycle theory to
overcome this inadequacy.

The core-careful cycle theory. We improve the normal-careful cycle theory by adding
that every transition excef@R itself, should be enabled aft&R Thus,7;.sic in the

core-careful cycle theorgontains, in addition to the basic rules in the normal-careful
cycle theory, the following rules:

RSR\RE(SI’ {}) : *RE(Slv {}) — SR(S,{},S,,T)

Ronjan(S, As) : *AE(S', As) — SR(S,{},5",7"), As = cas(S’,7), As # {},now(r)
Rsris1(S', Ps) : #SI1(S', Ps) — SR(S,{},S',7"), Ps = cps(S',7), Ps # {},now(r)
Rsriaor(S', Fs) : *xAOI(S', Fs) — SR(S,{},5,7"),Fs = crs(S',7), Fs # {},now(r)
RSR\POI(Slv {}) : *POI(SI7 {}) - SR(Sr {}73177_)

The following proposition states therrespondencbetween theore-careful cycle
theoryand the (trace-based characterisation of the) careful profile given in Definition 1:

Proposition 1 (Careful profile). The core-careful cycle theory induces the careful pro-
file of behaviour: Any agent using this cycle theory will never generate an operational
trace with two consecutive transitions that are different from SR.

Proof. This follows immediately from the fact that the basic part of the cycle theory
forces an SR after every other type of transition, and there is exactly one basic rule to
determine the follow-up of any transition different frdR

Other careful cycle theories The two careful cycle theories we have considered so
far are just two examples; there is a range of cycle theories that conform to the careful
behaviour profile. Our second example, the core-careful cycle theory is the most general
cycle theory conforming to the careful profile.
For concrete applications, we may wish to combine the features of careful behaviour
with other more specific features. We can construct a careful cycle theory of our choice
by taking the core-careful cycle theory as a starting point and then imposing additional
behaviour constraints using the following means:

— strengthening the enabling conditions in basic rules that determine the follow-up

transition for an SR;
— deleting basic rules that determine the follow-up transition for an SR;
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— adding any kind of behaviour rules;
— deleting rules that have become redundant due to other changes.

Note, however, that weannotadd any enabling conditions to the basic rules that state
thatSRhas to follow any other transition. Otherwise, the resulting cycle theory cannot
be guaranteed to conform to the careful profile of behaviour anymore. We also cannot
delete such a rule, unless it has already become redundant due to other changes in
the cycle theory. On the other hand, we do have complete freedom with respect to the
behaviour rules we might wish to add, because the basic rules never admit any conflict
as to what transition to choose after a transition different f&Rm the first place.

Clearly, any such careful cycle theory will also induce the careful profile of behaviour

in the sense of Proposition 1.

A property of the careful profile. Informally, under certain circumstances:

— Careful agents will never generate a reaction via the reactivity transition to timed-
out unachieved goals or timed-out unexecuted actions.

— Careful agents will never generate a reaction via the reactivity transition to actions
that may not be timed out yet but which are unexecuted and are no longer necessary.

More formally:

Theorem 1. The following will never contribute to the generation of a reaction (i.e. an
action in Plan or goal in Goals) via the RE transition:

1. atimed-out unexecuted action,

2. atimed-out unachieved goal,

3. an unexecuted action whose execution is no longer needed, i.e.
(a) with an ancestor which has already been achieved, or
(b) with a sibling that has been timed-out, or
(c) with an ancestor which has been timed-out,

provided that no action and no goal is timed out between an SR transition and its
immediate successor if that is an RE transition.

Proof. Let the assumption hold that no action and no goal is timed out between an SR
transition and its immediate successor if that is an RE transition. Suppose a careful agent
applies RE in a staté = (K B, Goals, Plan, TCS). Then by Definition 1, because

SR must have been applied in the state immediately pri6t, tw action or goal of the

type specified in 1-3, above exists in stateTherefore no such action or goal could
possibly contribute to the generation of any reaction by RE.

5.2 Focussed Profile

In thefocussedrofile of behaviour an agent does not plan for more than one top-level
goal at a time. More specifically, a focussed agent remains committed to a goal amongst
its top-level goals until
— that goal has been successfully achieved, or
— that goal has become infeasible, or
— that goal is not preferred by the Goal Decision capability anymore, when invoked
by theGl transition, or
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— that goal has an empty plan in the stite.
The advantages of the focussed profile come into effect in highly time-critical domains
as well as domains where an agent has several goals with mutually incompatible plans.
In such situations, a focussed agent can be expected to achieve, at least, some goals,
whereby an unfocussed agent may fail completely. This applies, in particular, to agents
that have a preference for total planning. By concentrating planning on a single goal at
a time, a focussed agent is likely to be faster and it will also avoid wasting computing
resources over incompatible plans for other goals.
Formally, the focussed profile has the following characteristic: A focussed agent, un-
der no circumstances, will generate an operational trace that includes a state with two
distinct top-level goals with children, neither of which is either achieved or infeasible.
Here, a goal7 is calledfeasibleiff neither itself nor any of its descendents is timed-out.
Note that this notion of infeasibility need not persist. A géalmay, at some point,
be infeasible, because an action in its current plan is timed-outzbuaty again be-
come feasible later on, after the agent has revised its state and computed a new plan.
Therefore, the only way to ensure that switching to a new top-level goal for planning
is admissible (under the focussed profile) is to first check that infeasible goalstayill
infeasible. This requires an SR. Hence, we can give the following alternative definition
of the focussed profile, which is simpler than our earlier definition.

Definition 2 (Focussed profile: trace-based characterisation)A focussed agent is
an agent that, under no circumstances, will generate an operational trace that includes
a state with two top-level goals with children.

This definition is stronger (more restrictive) than our first definition, but as argued ear-
lier, it is operationally equivalent to that definition, because an agent can only be sure
that switching goals will not violate the focussed profile after having executed an SR
(or after having performed an analogous check).

Possible extensionsNote that, according to our definition, focussed agents do not deal
with more than one top-level goal at a time, but may switch between top-level goals in
some situations, as exemplified by the following example.

Example 1.Consider the following (portion of a) trace:
.., SR(S,{},5,7), PI(S',Gs,8",7),...

with the top-level goals of, S, S” given by{G1, G2 }. Assume thaf; already has got
aplaninS, i.e. the set of items iFoals(S) U Plan(S) with ancestol; is not empty.
Assume also thak, has no planirt, i.e. the set of items iGFoals(S) U Plan(S) with
ancestolG, is empty. Suppose that all items in the plan€érin S are timed-out at,

and thusS’ is such thatGoals(S") is the set of all top-level goals iff andPlan(S’) =

{}. Suppose also that neithét; nor G5 are timed-out or achieved at, but Pl is
introducing a plan forG,, so that the set of items i6oals(S”) U Plan(S”) with
ancestorz, is not empty. The agent with this trace is focussed according to definition 2.
However, it does switch from dealing with gaayj to dealing with goal7,, despite goal

(G being still unachieved and feasible.

% The need for this last item will become clear in Example 1.
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Definition 2 of focussed agent may be modified to prevent goal switching, by com-
paring successive agent states in traces and force that once an agent has been plan-
ning/executing for one top-most level goal in one state, it must stick to that goal in suc-
cessive states, until the goal has been achieved or has become unachievable. This would
amount to getting rid of the last item in the informal description of focussed agent at
the beginning of Section 5.2 (and adding some other suitable conditions instead). This
stronger definition of focussed agent would however force extending the notion of cy-
cle theory and operational trace, either by looking at histories of transitions rather than
individual transitions when deciding on the next transition, or by introducing additional
information into cycle theories, such as variables holding the current top-level goal be-
ing dealt with. We therefore leave the stronger definition to future work.

Note also that our notion of focussed agent only referopslevelgoals, and not to
sub-goals or actions. The notion of focussed agent could be extended so as to define
agents that are focussed all the way, from top-level goals down.

Focussed Cycle TheoriesTo achieve the abstract specification, we need a cycle theory
that ensures that before any Pl an SR has been performed. This is to ensure that we can
proceed with planning for a top-level goal even if some of its current children have
become infeasible. However, rather than implementing this behaviour directly, we are
going to ensure that Pl is only enabled with respect to a set of goals that a focussed
agent may plan for given its current state according to the Definition 2. (This, in effect,
encourages an SR transition when a PI transition is not enabled.)

Definition 3 (Focussed cycle theoriesA cycle theory is called focussed iff the initial
rule Rojp;(S,Gs) (in Tinitiar) and the basic rule (irfyasic) Rrjpr(S, Gs) for any
transitionT" include the enabling conditiofiocussed(Gs’, S, Gs), where:
— given thatG's is the set of goals to which PI will be applied agd’ O Gs is the
set of goals returned by the goal selection function, then
— the predicatefocussed(Gs', S, Gs) holds iff all the goals irGs are descendants of
the same top-level goal (possibly including that top-level goal itself) and no other
top-level goal has got any children.

The focussed variant of the normal cycle theory would havg,jp;,; the rule
R0|p[(So, GS) : *P[(So, GS) — GS, = Cgs(So, T),

focussed(Gs', So,Gs),Gs # {}, now(r)
instead of the original rule

Ro|p1(So, Gs) : *xPI(So,Gs) +— Gs = cas(So,7),Gs # {}, now(r)

Similarly, the focussed variant of the normal cycle theory would haw®gjg. the rule

Ragpr(S’,Gs) : xPI(S',Gs) — AE(S, As, S',7"),Gs" = cas(S', 1),
focussed(Gs', S, Gs),Gs # {},now(r)
instead of the original rule
Rappi(S',Gs) : «xPI(S',Gs) «— AE(S, As,S',7"),Gs = cas(S', 1), Gs # {}, now(r)

The correspondencéetween the trace-based characterisation offdbassed profile
and the class of focussed cycle theories may be stated as follows:
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Proposition 2 (Focussed profile)Any cycle theory that is focussed according to Def-
inition 3 induces the focussed profile of behaviour according to Definition 2.

Proof. The enabling conditiorfiocussed(Gs’, S, Gs) restricts the set of goals for which

the agent may plan to precisely the set of goals that are available for planning according
to the trace-based characterisation of the focussed profile. The claimed correspondence
then follows immediately from the fact that Pl is the only transition that can add non-
top-level goals to a state.

A property of the focussed profile. Let a focussed agent be one equipped with a
focussed cycle theory, and a normal agent be one equipped with the normal cycle theory.
Then if the two agents have a set of goals for which they have no compatible plans then
the focussed agent may be able to achieve at least some of its goals while the normal
agent may not be able to achieve any of the goals. The theorem below shows under what
conditions the focussed agent is guaranteed to achieve more of its goals compared to
the normal agent. Note that conditions 1-6 simply set the scene for the theorem whereas
conditions 7-9 restrict features of the environment and the application.

Theorem 2. Let f be a focussed agent amdbe a normal agent. Lef andn be in a
stateS = (K B, Goals, Plan, TCS) at timer such that all the conditions below hold:

1. Plan is empty.

2. Goals consists of top-level goalsy, ...,G,,n > 1%

3. The goal selection function, in state at all timesr’, 7/ > 1, selects the same set
of k goals for somé < k < n, until one or more such goals are achieved. Assume
these goals ar¢G1, . .., G}, without loss of generality.

4. The agents’ PI transition produces a total plan for all its input goals.

5. At all times afterr, given input goal§ Gy, . .., Gy}, the agents’ PI transition re-
turns no plan, because none exists in the overall state.

6. At all times afterr, given input goaldG;}, i = 1, ...k, the agents’ Pl transition
returns a (total) plan.

Then,f will achieve at least one of the goals amongst ..., G,,, whilen will achieve
none of them, provided that:

7. The agents’ RE transition generates no goals or actions.

8. No POI, AOI transitions are performed, and no Gl transition is performed after the
establishment of top-level goals, ... G,.

9. Goals and actions are non-time critical, i.e. no goal or action is timed out.

Proof. (Sketch) Consider the case of the normal agety conditions 3,5,7,8 the state

of n remains the same (although time progresses). In this state, by conditions 3 and 5,
n can never make any progress towards achieving any of its top-level goals.

Now consider the case of the focussed agewtt some timery, 4y > 7, f performs PI.

By conditions 3 and 6 and the definition of the focussed profile agoal = 1,. .. k,

is selected and PI succeeds in producing a complete pla@;faand updates its state

by adding all the produced actionss to its Plan and updatingl’C'S appropriately.

4 Conditions 1. and 2. can arise, for examplef @indn have just executed Gl starting from the
same initial state.
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These new actions will then all be executed. They will not be timed-out by condition 9.
So they may be removed from the state of the agent by SR only if their associated goal
is achieved. Any new goals and actions that may be introduced by later applications of
P1 will not interfere with the execution of the actions in As. Therefore, finally, after all
the actions are executed, it will be possible to prove by the Temporal Reasoning that
goal G; which was selected at time is achieved.

Note that conditions 7—-9 are sufficient but not necessary conditions. For example con-
dition 8 can be replaced with one that requires only that any observation recorded as
a result of a POl is “independent” of the godls, ..., G, and allows Gl transitions

but imposes restrictions on their frequency. It is possible to construct examples where
some, possibly many, of conditions 7-9 do not hold, but still the focussed agent per-
forms better than the normal one in goal achievement terms.

6 Conclusion

In this paper, building on our earlier work [6], we have further explored the use of
cycle theories for declarative control of agents. We showed how in the case of KGP
agents we can define concrete and useful agent profiles or personalities by varying the
rules in cycle theories. We showed two such profiles in detail, careful and focussed,
and exemplified and formally proved their advantages. The cycle theories for these two
profiles are no more complicated than the normal cycle theory, and possibly, in the case
of the careful profile, the cycle theory is simpler.

The careful profile is best suited to a dynamic unpredictable environment, but one in
which the agent does not have strict deadlines. The focussed profile is best suited to
resource-bounded agents. The theoretical analysis of the profiles not only allows ex-
ploration of heterogeneity of agents, but it can also provide guidelines to designers of
agents and implementers, for example those using the PROSOCS platform. There is
scope for exploring a number of other profiles, some of which have been introduced in
[1]. Exploring other profiles, parameterising their advantages and disadvantages accord-
ing to factors in the environment and application domains and exploring how profiles
can be usefully combined are subjects of current and future research. Currently we see
no problem in combining the careful and focussed profiles.

Our work on profiles shares some of the objectives of the work on commitment strate-
gies based on the BDI model [11]. Three commitment strategies have been defined,
blind, single mindedandopen mindedThey are defined by expressing relationships
between current and future intentions. A blindly committed agent, for example, main-
tains its intentions as long as it believes that it has achieved them, while a single minded
agent maintains its intentions until it believes they are achievable. Our work on profiles
and their consequences goes some way beyond these commitment strategies.

Our approach shares the aims of 3APL [4] to make it possible to program the agent cycle
and make the selection mechanisms explicit. But it goes beyond 3APL by abandoning
the concept of fixed cycles and replacing it with dynamic programmable cycle theories.
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Normal cycle theory in full

Znitial:

Rojc1(S0,{}) : *GI(S0,{}) < empty-_goals(So)

Roip1(So0,Gs) : *xPI(Sy,Gs) « Gs = cqs(So,7), Gs # {}, now(r)
Roipor(So,{}) : *POI(So,{}) < poi_pending(7), now(t)

%asic:

rules for deciding what might follow AE:

Rappi(S',Gs) : xPI(S',Gs) — AE(S,As,S",7'),Gs = cgs(9',7),Gs #
{}, now(r)

Ragpjap(S’, As') : xAE(S', As') <~ AE(S, As, S, 7"), As' = cas(S',7), As’ #
{}, now(r)

Rapjaor(S’, Fs) : xAOI(S', Fs) «— AE(S, As,S',7'), Fs = cps(S',7), Fs #
{}, now(r)

RAE|SR(S/7 {}) : *SR(S/v {}) — AE(S’ A'Sv S/v T/)

7—\J/AE|GI(S/> {}) : *GI(SI’ {}) - AE(57 AS,S',T')

rules for deciding what might follow SR:
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Rsrpr(S',Gs) « xPI(S',Gs) «— SR(S,{},5",7"),Gs = cas(S',7),Gs #
{}, now(t)

Rsriar(S',{}) : *GI(S",{}) « SR(S,{},5'1),Gs = cgs(S',7),Gs = {}, now(r)
rules for deciding what might follow PI:

Rprap(S',As) « *AE(S', As) «— PI(S,Gs,5',7'),As = cas(S',7),As #
{}, now(t)

Rprsi(S', Ps) : #SI(S', Ps) « PI(S,Gs,S8',7"),Ps = cps(S',7), Ps #
{}, now(r)

rules for deciding what might follow Gl:

RGI|RE<S/7 {}> : *RE(S/v {}) — GI(S’ {},S/,T)

Rarnpr(S',Gs) « «PI(S',Gs) «— GI(S,{},5",7"),Gs = cgs(S',7),Gs #
{}, now(t)

rules for deciding what might follow RE:

Rrepi(S',Gs) « xPI(S',Gs) «— RE(S,{},5',7'),Gs = cgs(5',7),Gs #

{}, now(t)
Rre|si(S', Ps) « xSI(S', Ps) « RE(S,{},5,7"),Ps = cps(S',7),Ps #
{}, now(r)
Rrpjap(S', As) « xAE(S', As) «— RE(S,{},5',7'),As = cas(5',7),As #
{}, not(r)

Ripisr(S'.{}) : *SR(S'{}) — RE(S,{},5',7")
rules for deciding what might follow SI:
Rsrjap(S',As) « xAE(S', As) «— SI(S,Ps,S',7'),As = cas(5',7),As #
{3} now(r)
rules for deciding what might follow AOI :
Raorae(S’, As) : *xAE(S', As) « AOI(S, F's,S",7'), As = cas(5',7), As #
{}, now(r)
RAOI\SR(Slv {}) : *SR(Slv {}) — AOI(Sv FS, S/v 7-/)
Raornsi(8', Ps) : xSI(S', Ps) « AOI(S, Fs,S',7")Ps = cps(S',7), Ps #
{}, now(r)
rules for deciding when POI should take place
Rrpor(S',{}) : xPOI(S',{}) < T(S, X, S, '), poi_pending (), now(r)
for all transitionsT’;
rules for deciding what might follow POI:
Rponar(8',{}) : *GI(S",{}) <« POI(S,{},5",7)
RPO[\RE(S/a {}) : *RE(S/v {}) — POI(Sv {}7 Sl? T)
?PO[\SR(Sly {}) : *SR(S",{}) « POI(S,{},5,7)
behaviour-
Gl is given higher priority if there are no goals in Goals and actions in Plan:
Phivr : Rrici(S,{}) = Ry (S, X) «— empty_goals(S), empty_plan(S)
forall T, T’, with T # GI andT possibly 0;
Gl is also given higher priority after a POI:

'PglO:T 5RPO[\GI(S/) - RPOI\T(S, S/) for aIIT;é GI,
after Gl, RE is given higher priority :

Pgé>T :RGI|RE(S:{}) - RGI\T(SvX) for alIT;é RE,
after RE, Pl is given higher priority :

'P]}g%IE>_T IRRE“D](S,GS) >_RRE|T(S7X) for a”T#Pl,
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after PI, AE is given higher priority, unless there are actions in the actions se-
lected for execution whose preconditions are “unreliable” and need checking,
in which case Sl will be given higher priority:

PEE Rprae(S; As) = Rprr(S, X) « not unreliable_pre(As)

forall T £ AF;

PEL Rprsi(S, Ps) = Rprr(S, As) < unreliable_pre(As)
forall T # ST,

after Sl, AE is given higher priority :

PiIE>T ZRS[‘AE(S, AS) > RS[|T(S7X) for a”T#AE,

after AE, AE should be given higher priority until there are no more actions

to execute in Plan, in which case either AOI or SR should be given higher

priority, depending on whether there are actions which are “unreliable”, in

the sense that their effects need checking, or not

PAE>T RAE|AE(S AS) >RAE\T(S X) fOfa”T#AE

PA01>T Ragjaor(S, Fs) = Ragir(S, X) « empty_executable_plan(S), unreliable_post(S)
forall T'# AOI,

P?I§>T :Rapisr(S,{}) = Ragpir (S, X) < empty_executable_plan(S), not unreliable_post(S)
forall T # SR;

after SR, PI should have higher priority:

,ng;T : RSR|p[(S7 GS) - RSR\T(Sa {}) forall T # PI,

after any transition, POl is preferred over all other transitions:

PII;I>T’ : RTHOI(S) - RT‘T/(S,X) for all T, T/, with 77 7& POI andT

possibly 0;

in the initial state, Pl is given higher priority :

P%I>—T 3R0|p[(5’, GS) - Ro‘T(S,X) for a”T’7é PI,

The auxiliary part includes definitions fempty _goals, unreliable_pre, unreliable_post,
empty_executable_plan, poi_pending etc. Note thapoi_pending () holds when

there is an input from the environment pending.
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Abstract. We discuss the application of Model-Based Diagnosis in (agent-based)
planning. Here, a plan together with its executing agent is considered as a system
to be diagnosed. It is assumed that the execution of a plan can be monitored by
making partial observations of the results of actions. These observations are used
to explain the observed deviations from the plan by qualifying some action in-
stances that occur in the plan as behaving abnormally. Unlike in standard model-
based diagnosis, however, in plan diagnosis we cannot assume that actions fail
independently. We focus on two sources of dependencies between failures: such
failings may occur as the result of malfunctioning of the executing agent or may
be caused by dependencies between action instances occurring in a plan. There-
fore, we introduce causal rules that relate health states of the agent and health
states of actions to abnormalities of other action instances. These rules enable us
to determine the underlying causes of plan failing and to predict future anomalies
in the execution of actions.

1 Introduction

The well-known quote?’No plan survives its first contact with the enemstiould re-

mind us thaidiagnosisconstitutes an unavoidable part of the plan execution process.
Since there is a huge number of potential factors that might influence, or even prevent,
correct plan execution, it is not surprising that current approaches to plan diagnosis are
rather diverse.

The aim of this paper is to adapt and extend a classical Model-Based Diagnosis
(MBD) approach to the diagnosis of plans. To this end, first we will show how a plan
consisting of a partially ordered set of actions can be viewed as a system to be di-
agnosed and how a diagnosis can be established psirigl observationf a plan
in progress. Distinguishing between normal and abnormal execution of actions in a
plan, we then introduce sets of actions qualified as abnormal to explain the deviations

* This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs (the Netherlands).
Project DIT5780: Distributed Model Based Diagnosis and Repair

3 The quote is attributed to the Prussian Field Marshall Von Moltke.



between expected plan states and observed plan states. Hence, in this approach, a plan
diagnosis is just a set of abnormal actions that is able to explain the deviations observed.
Although plan diagnosis conceived in this way is a rather straightforward application

of MBD to plans, we do need to introduce new criteria for selecting acceptable plan
diagnoses: First of all, while in standard MBD usually subset-minimal diagnoses, or
within themminimum (cardinality)diagnoses, are preferred, we also pref@ximum
informativediagnoses. The latter type of diagnosis maximizes the exact similarity be-
tween predicted and observed plan states. Although maximum informative diagnoses
are always subset minimal, they are not necessarily of minimum cardinality. More dif-
ferences between MBD and plan diagnosis appear if we take a detailed look into the
reasons for choosing minimal diagnoses. The idea of establishing a minimal diagnosis
in MBD is governed by the principle ahinimal changeexplain the abnormalities in

the behavior observed by changing the qualification from normal to abnormal for as
few system components as necessary. Using this principle is intuitively acceptable if
the components qualified as abnormal are failmiependentlyHowever, as soon as
dependenciesxist between such components, the choice for minimal diagnoses cannot
be justified. As we will argue, the existence of dependencies between failing actions in

a plan is often the rule instead of an exception. Therefore, we will refine the concept of

a plan diagnosis by introducing the concept afaaisal diagnosisTo establish such a
causal diagnosis, we consider both the executing agent and its plan as constituting the
system to be diagnosed and we explicitly relate health states of the executing agent and
subsets of (abnormally qualified) actions to the abnormality of other actions in the form

of causal rules. These rules enable us to replace a set of dependent failing actions (e.g. a
plan diagnosis) by a set of unrelateausef the original diagnosis. This independent

and usually smaller set of causes constitutes a causal diagnosis, consisting of a health
state of an agent and an independent (possibly empty) set of failing actions. Such a
causal diagnosis always generates a cover of a minimal diagnosis. More importantly,
such causal diagnoses can also be used to predict failings of actions that have to be
executed in the plan and thereby also can be used to assess the consequences of such
failures for goal realizability.

This paper is organized as follows. First of all, in the next section, we place our
approach into perspective by discussing some related approaches to plan diagnosis.
Section 3 introduces the preliminaries of plan-based diagnosis, while Section 4 for-
malizes plan-based diagnosis. Section 5 extends the formalization to determining the
agent’s health state. Finally, we briefly discuss some computational aspects of (causal)
plan diagnosis.

2 Related research

In this section we briefly discuss some other approaches to plan diagnosis. Like we use
MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBpltnm-

ning agentgelating health states of agentsaotcomef their planning activities, but

not taking into account faults that can be attributed to actions occurring in a plan as a
separate source of errors. However, instead of focusing upon the relationship between
agent properties and outcomes of plan executions, we take a more detailed approach,
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distinguishing two separate sources of errors (actions and properties of the executing
agents) and focusing upon the detection of anomalies during the plan execution. This
enables us to predict the outcomes of a plan on beforehand instead of using them only
as observations.

Another approach that directly applies model-based diagnosis to plan execution has
been proposed in [6]. Here, the authors focus on agents each having an individual plan,
and where conflicts between these plans may arise (e.qg. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountgblefer
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [10, 11] applsocial diagnosisn order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors). This approach might complement our ap-
proach when conflicts not only arise as the consequence of faulty actions, but also as
the consequence of different selections of sub-plans in a joint plan.

Lesser et al. [3, 9] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use otausal modethat can help an agent to refine its initial diagnosis
of a failingcomponen(called atask of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. While their approach in its ultimate intentions (establishing
anomalies in order to find a suitable plan repair) comes close to our approach, their
approach to diagnosis concentrates on specifying the exact causes of the failing of one
singlecomponen(task) of a plan. Diagnosis is based on observations of a component
without taking into account the consequences of failures of such a component w.r.t. the
remaining plan. In our approach, instead, we are interested in applying MBD-inspired
methods taletectplan failures. Such failures are based on observations during plan ex-
ecution and may concern individual components of the plan, but also agent properties.
Furthermore, we do not only concentrate on failing components themselves, but also on
the consequences of these failures for the future execution of plan elements.

3 Preliminaries

3.1 Model based Diagnosis

In Model-Based Diagnosis (MBD) [4, 5, 13] a systéfis modeled as consisting of a
set Comp of components and their relations, for each componentComp a setH,
of health modess distinguished and for each health mddec H. of each component
¢ a specific (input-output) behavior ofis specified. Given some input 8 its output
is defined if the health mode of each componert Comp is known. The diagnostic
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engine is triggered whenever, under the assumption that all components are functioning
normally, there is a discrepancy between the output as predicted from the input obser-
vations, and the actually observed output. The result of MBD is a suitable assignment
of health modes to the components, callatlagnosis such that the actually observed
output isconsistentwith this health mode qualification or can leeplainedby this
qualification. Usually, in a diagnosis one requires the number of components qualified
as abnormally to be minimized.

3.2 States

We consider plan-based diagnosis as a simple extension of model-based diagnosis where
the model is not a description of an underlying system hpitaa of an agent. Before

we discuss plans, we discuss @lnject-or resource-basediew on the world, assum-

ing that for the planning problem at hand, the world can be simply described by a set
Obj = {01, 09, ..., 0,} Of Objects, their respectiwalue domains; and their (current)
valuess; € 9,. A state of the worldr then is an element &; x S5 x ... x S,,. It will

not always be possible to give a complete state description. Therefore, we introduce a
partial stateas an element € S;,, x S;, x ... x S;,, wherel < k < nandl <

i1 < ... <1, <n.WeuseO(r) to denote the set of objec{s;, , 0i,,...,0:;,} C Obj
specified in such a state The values; of objecto; € O(x) in = will be denoted by

7(j). The value of an objeat; € Obj not occurring in a partial state is said to be
unknown (or unpredictable) in, denoted byl . Partial states can be ordered with re-
spect to their information content:is said to be contained i, denoted byr C =/, iff

O(m) C O(n’) andn’(j) = n(j) for everyo; € O(w). We say that two partial states

7' areequivalentmodulo a set of object®, denoted byr = «’, if for everyo; € O,

m(7) = 7' (4). Finally, we define the partial staterestricted to a given s&?, denoted

by 7 [ O, as the state’ C = such thaO(7') = O N O(x).

3.3 Goals

An (elementary) goaj of an agent specifies a set of states an agent wants to bring about
using a plan. Here, we specify each such a gaas a constraint, that is a relation over
some produck;, x ... x S;, of domains.

We say that a gogj is satisfied by a partial state, denoted byr = g, if the
relationg contains at least one tuple;, , v;,, . . ., v;, ) such thai(v;, , v;,, ...v;,) C .
We assume each agent to have ageff such elementary goalse G. We user = G
to denote that all goals i@ hold inr, i.e. forallg € G, 7 = g.

3.4 Actions and action schemes

An action schemer plan operatow is represented as a function that replaces the values
of a subse®, C Obj by other values, dependent upon the values of anothé?’set

O,, of objects. Hence, every action scheme&an be modeled as a (partial) function
fo 1 Sy x .o x 8, — S;; x ... x S5, wherel <4 < ... < i < nand

4 In contrast to the conventional approach to state-based planning, cf. [8].
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{j1,---y51} € {i1,...,ix}. The objects whose value domains occudimn( f,,) will
be denoted bylomo(a) = {0;,,...,0;, } and, likewiserano(a) = {oj,,...,0;}.
Note that it is required thatano () € domo(«). This functional specificatiorf,,
constitutes th@ormalbehavior of the action scheme, denoted/jy".

Example 1.Figure 1 depicts two states ando; (the white boxes) each characterized

by the values of four objects,, 02, 03 ando4. The partial states, andm; (the gray

boxes) characterize a subset of values in a (complete) state. Action schemes are used to
model state changes. The domain of the action schemahe subsefo;, 02}, which

are denoted by the arrows pointingdo The range ofx is the subsefo, }, which is
denoted by the arrow pointing from Finally, the dashed arrow denotes that the value

of objecto, is not changed by operator(s) causing the state change. ]

O m O O O o

OmY O] O | o

01 02 03 04

Fig. 1. Plan operators & states.

The correct execution of an action may fail either because of an inherent malfunc-
tioning or because of a malfunctioning of an agent responsible for executing the ac-
tion, or because of unknown external circumstances. In all these cases we would like
to model the effects of executing such failed actions. Therefore, we introduce a set of
health moded\/,, for each action scheme. This set)M,, contains at least the normal
modenor, the modeub indicating the most general abnormal behavior, and possibly
several other specific fault modes. The most general abnormal behavior of @dtion
specified by the functiorf.?®, where £ (s;,, si,,...,8:,) = (L, L,..., 1) for ev-
ery partial statés;, , s;,,...,s;,) € dom(f.).> To keep the discussion simple, in the
sequel we distinguish only the health modes andab.

Given a set4 of action schemes, we will need to consider a4et inst(.A) of
instancesf actions inA. Such instances will be denoted by small roman letigrsf
type(a;) = a € A, such an instance; is said to be otypea. If the context permits
we will use “actions” and “instances of actions” interchangeably.

5 This definition implies that the behavior of abnormal actions is essentially unpredictable.

205



3.5 Plans

A planis a tupleP = (A, A, <) whereA C Inst(A) is a set of instances of actions
occurring inA4 and (4, <) is a partial order. The partial order relatienspecifies a
precedence relation between these instances:a’ implies that the instance must
finish before the instanc€ may start. We will denote thigansitive reductiorof < by
<, i.e., < is the smallest subrelation ef such that the transitive closure™ of <
equals<.

We assume that if in a plaf two action instances anda’ are independent, in prin-
ciple they may be executed concurrently. This means that the dependency relation
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assumeo satisfy the followingconcurrency requirement

If rano(a) N domo(a’) # @ thena < a’ ora’ < a.b

That is, for concurrent instances, domains and ranges do not overlap.

Example 2.Figure 2 gives an illustration of a plan. Arrows relate the objects an action
uses as inputs and the objects it produces as its outputs to the action itself. In this plan,
the dependency relation is specified@s< as, as < a4, ay < as, ag <K ag and

a1 < as. Note that the last dependency has to be included becausbanges the
value ofos needed byi;. The actiona; shows that not every object occurring in the
domain of an action need to be affected by the action. The adtipasdag illustrate

that concurrent actions may have overlapping domains. ]

4 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instanadealth moden, € {nor,ab} can
be assigned and the result is calledualified plan. In establishing which part of the
plan fails, we are only interested in those actions qualifies as abnormal. Therefore, we
define a qualified versiok of a planP = (A, A, <) asatuplePy = (A, A, <,Q),
where@ C A is the subset of instances of actions qualified as abnormal (and therefore,
A — @ the subset of actions qualified as normal).

Since a qualificatiod) corresponds to assigning the health mabtléo every action
in Q and sincef® (s, , si,,---,8i,) = (L, L,..., L) for every actiona € Q with
type(a) = «, the results of anomalously executed actions are unpredictable. Note that
a “normal” plan P corresponds to the qualified pldfy and furthermore that in our
context “undefined” is considered to be equivalent to “unpredictable”.

4.1 Qualified Plan execution

For simplicity, when a plai® is executed, we will assume that every action takes a unit
of time to execute. We are allowed to observe the execution of afpltrdiscrete times

5 Note that sincerano(a) C domo(a), this requirement excludes overlapping ranges of con-
current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.
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Fig. 2. Plans and action instances. Each state characterizes the values of four ehjegtss
andoy. States are changed by application of action instances

t=0,1,2,...,k wherek is the depth of the plan, i.e., the longestchain of actions
occurring inP. Let depthp(a) be the depth of action in plan P = (A4, A, <).” We
assume that the plan starts to be executed at timse) and that concurrency is fully
exploited, i.e., ifdepthp(a) = k, then execution ofi has been completed at time
t = k + 1. Thus, all actions with depthp(a) = 0 are completed at time = 1 and
every actiora with depthp(a) = k will be started at time: and will be completed at
time k£ + 1. Note that thanks to the above specified concurrency requirement, concurrent
execution of actions having the same depth leads to a well-defined result.

Let P, denote the set of actionswith depthp(a) = t,let P~y = o, Prr, P<¢ =

Uy < PrandPy 41 = Ufclzt P,. Execution ofP on a given initial stater, will induce a
sequence of states, o1, . .., ok, Whereo,; is generated fromr, by applying the set
of actionsP; to o;. Instead, however, of assuming total states and total state transitions,
we define the (predicted) effect of the execution of pfaan a given (partial) state at
timet > 0, denoted by, t).

We say thai(n’,t + 1) is (directly) generated by execution &%, from (r,¢), ab-
breviated by(r,t) —q,p (7', ¢ + 1), iff the following conditions hold:

1. 7' [rano(a) = f2°7 (7 [ domo(a)) for eacha € P; — @ such thadomp(a) C
O(m), that is, the consequences of all actiansnabled inr can be predicted and
occur inz’.8

" Here,depthp(a) = 0if {a’' |o’ < a} = @ anddepthp(a) = 1 + maz{depthp(a’) | ¢’ <
a}, else. If the context is clear, we often will omit the subsciipt
8 An actiona is enabled in a state if domo(a) C O(n).
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Fig. 3. Plan execution with abnormal actions

2. O(n") Nranp(a) = @ for eacha € Q N P;, since the result of executing an
abnormal action cannot be predicted (even if such an action is enabtgd in

3. O(7') Nranp(a) = @ for eacha € P, with domo(a) € O(n), that is, even if
an actioru is enabled in (the complete statg) if a is not enabled inr C oy, the
result is not predictable and therefore does not occut jiisince it is not possible
to predict the consequences of actions that depend on values not defined in

4. 7'(i) = =(4) for eacho; & rano(P;), thatis, the value of any object not occurring
in the range of an action i#; should remain unchanged. Heteyno(P;) is a
shorthand for the union of the setsng(a) with a € P;.

For arbitrary values of < ¢’ we say thafn’, ¢') is (directly or indirectly) generated
by execution ofPq from (m,t), denoted by(w,t) —7.p (7',t'), iff the following
conditions hold:

1. ift =t thenn’ = T;

2. ift' =t+1then(m,t) —q.p (7', t');

3. if ¢’ >t + 1 then there must exists some stat¢, ¢’ — 1) such that(r,t) —7 p
("t — 1) and(n”,t' — 1) —q.p (7', t').

Note that(r,t) —%.p (7',t') denotes the normal execution of a normal pian
Such a normal plan execution will also be denotedbyt) —% (7, t').

Example 3.Figure 3 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose actiom; is abnormal and generates a result that is unpredictable (
Given the qualificatioi) = {a3} and the partially observed statgat time pointt = 0,

we predict the partial states as indicated in Figure 3, whefer, to) —5.p (i, t:)

for i = 1,2, 3. Note that since the value of and ofos cannot be predicted at time

208



t = 2, the result of actiomg and of actiorug cannot be predicted and contains only
the value ofos. |

4.2 Diagnosis

Suppose now that we have a (partial) observatit(t) = (7,t) of the state of the
world at timet and an observatioobs(t') = (', ') at timet’ > ¢ > 0 during the exe-
cution of the planP. We would like to use these observations to infer the health states of
the actions occurring if*. Assuming a normal execution &f, we can (partially) pre-

dict the state of the world at a time poititgiven the observationbs(t): if all actions
behave normally, we predict a partial statg at timet¢’ such thatbs(t)—5 (75, ).
Since we do not require observations to be made systematicalty,) and O(r,)
might only partially overlap. Therefore, if this assumption holds, the values of the ob-
jects that occur in both the predicted state and the observed state dtsmeald match,

i.e, we should have

7’ =O(n")NO(7ly) 7T/z~
If this is not the case, the execution of some action instances must have gone wrong and
we have to determine a qualificatigp such that the predicted state derived using
agrees withr’. This is nothing else then a straight-forward extension of the diagnosis
concept in MBD to plan diagnosis (cf. [5]):

Definition 1. Let P = (A, A, <)be a plan with observationsbs(t) = (w,t) and
obs(t') = (n',t'), wheret < ' < depth(P) and letobs(t)—,. p(7(,, ') be a deriva-
tion assuming a qualificatio. Then@ is said to be alan diagnosisf (P, obs(t), obs(t'))
iff 7' =onnoes) T

So in a plan diagnosi§ the observed partial state’§ at timet’ and the predicted
state ;) assuming the qualificatio@ at timet’ agree upon the values of all objects
occurring in both states.

Example 4.Consider again Figure 3 and suppose that we did not know that action
as was abnormal and that we observad(0) = ((s1, s2, $3,54),0) andobs(3) =

(s, s%, s5),3). Using the normal plan derivation relation starting witis(0) we will
predict a stater), at timet = 3 whereny = (s{, s, s4). If everything is ok, the values

of the objects predicted as well as observed at time 3 should correspond, i.e. we
should haves’, = s/ for j = 1, 3. If, for example, onlys} would differ from s/, then

we could qualifyag as abnormal, since then the predicted state at tirse 3 using

Q = {ae} would berg, = (s3) and this partial state agrees with the predicted state on
the value ofos. [ |

Note that for all objects i®(7') N O(wb), the qualificatior provides arexplana-
tion for the observatiom’ made at time point’. Hence, for these objects the qualifica-
tion provides arabductive diagnosift] for the normal observations. For all observed
objects inO(w") — O(y, ), no value can be predicted given the qualificatiprHence,
by declaring them to be unpredictable, possible conflicts with respect to these objects
if a normal execution of all actions is assumed, are resolved. This corresponds with the
idea of aconsistency-based diagno§is].
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If @ is a plan diagnosis ofP, obs(t), 0bs(t')), then every supers€)’ O @ is also
a plan diagnosis, since in that case we hage; w’Q and thereforer’ =0(x")NO(rsy)
mg implies 7/ =0(x)NO(rly,) m¢ - Clearly then, the smaller a diagnosis is, the more
values it will predict that are also actually observed in the resulting plan state. This,
like in MBD, is a reason for us to prefeninimumdiagnoses among the set of minimal
diagnoses.

But there is a caveat: a minimum diagnosis only minimizes abnormalities to ex-
plain deviations; as important however for a diagnosis might biafismation content
i.e. the exactness it provides in predicting the values of the variables occurring in the
observed state’. This means that besidesinimizingthe cardinality of abnormalities
another criterion could beaximizingthe exactness of the similarity by maximizing
|O(7") N O(mg,)| i.e. maximizing the number of variables having the same value in the
predicted state and the observed state. Therefore, besides a minimum diagnosis we also
define the notion of anaximum informative diagnosis

Definition 2. Given plan observation&P, (r, t), (7’,t’)), a qualification@ is said to
be aminimum plan diagnosis for every plan diagnosig)’ it holds that|@Q| < |Q’|.

Q is said to be anaximum informative plan-diagnosiéfor all plan diagnose%)*,
it holds that|O(7") N O(mg,)| > |O(7") N O(mg,.)

Note that for every maximum informative diagnoglsve haveO(r’) N O(rg,) C
O(n') N O(75 ), whereobs(t)—4. p(75, ') is the partial state derivation assuming a
normal planexecution.

Also note that every maximum informative diagnosis is a minimal diagnosis. So
both minimum plan diagnoses and maximum informative plan diagnoses are the result
of different criteria for selecting minimal diagnoses, as the following example shows:

Example 5.To illustrate the difference between minimum plan diagnosis en maximum
informative diagnosis, consider again the plan execution depicted in Figure 3. Given
obs(0) andobs(3) and a deviation in the value @, at timet = 3, there are three
possible minimum diagnose®; = {a;}, D2 = {a3} andD3 = {as}. D3 and D3 are

also maximum-informative diagnoses. ]

5 Causes of plan-execution failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of
a plan execution and the predicted effects. The reason is that often in a plan instances
of actions do not fail independently. For example, suppose that we have a plan for car-
rying luggage from a depot to a number of waiting planes. Such a plan might contain
several instances of a drive action pertaining to the same carrier controlled by an agent.
Suppose that an instanagof some drive action (type) behaves abnormally because

of malfunctioning of the carrier. Then it is reasonable to assume that other instances
a; of the same drive action that occur in the pkter a; can be predicted to behave
abnormally, too. Another possibility is that a number of instances of actions is related
the malfunctioning of aragentexecuting several actions in the plan. For example, in
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the luggage example, the carrier is controlled is by a driving agent. If this agent itself is
not functioning well, all driving actions as well as loading and unloading actions might
be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being ab-
normal implies that other instances of actions must be qualified a being abnormal, too.
Minimum and information-maximum diagnosis do not take into account these depen-
dencies between action failures. Therefore, we must take into consideration the under-
lying causesf a plan-execution failure.

5.1 Causal Rules

To be able to include a malfunctioning of an executing agent as a possible cause, we will
consider a plan together with its executing agent as the system to be diagnosed. Here, an
agent will be simply represented by a ebf specific health states. To identify causes

of action failures, we use a sgtof causal rulesn combination with plan diagnosis. A
causal rule is a rule that can appear in the following forms:

- (a1,q9,...,a) = agy1, Wwherek > 1 and, fori = 1,2... ) k+ 1, a; € Aare
action types. This type of rule relates the occurrence of a set of failed actions to the
occurrence of a failed action implied by them. The intuitive meaning of these rules
is that if during plan execution there are, foe 1,..., k, action instances; of
type «; that have been qualified as abnormal up to timten it is inferred that
from timet + 1 on all instances of actions of type,,; will behave abnormally,
too.

- (h;oq, a9, ...,ar) — ag+1, Wherek > 0, h € H is a health statéh £ nor)
of the plan executing agent and, foe= 1,2...,k + 1, a; € A are action types.
This type of rule relates the occurrence of an agent abnorniedibd a set of action
abnormalities occurring at timeo the inference of a failed action at time 1. The
intuitive meaning of such a rule is that if during plan execution at some tirae
t + 1 the agent operates in some abnormal health stagesl, fori = 1,2,. ..k,
there are action instances of type «; that have been qualified as abnormal up to
timet, then it is inferred that from tim&+-1 on all instances of actions of tyjpe.
that occur in the plan will behave abnormally, .k = 0, this rule establishes a
health state as a single cause for action failure.

The intuitive idea behind a causal diagnosis is to be able to explain a given plan
diagnosig) by a (usually smaller) set of qualifications (caus@sjogether with some
health state: of the agent established at timeising the set of causal rulés Using
such a pair consisting of a health state and a qualification should enable us to generate,
using the rules irR, a set containing).

To define the effect of applying to a set of (unique) instances of actions occurring
in a plan, we first construct the setst(R) of instance of actions with respect to given
planP = (A, A, <) as follows:

9 We allow abnormal health states to be detected at the same time that abnormal action conse-
guences are generated.
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— For every ruler of the form(ay, as,...,ar) — axyr1 € R, inst(R) contains an
instance(a;, , iy, - - -, a;,) — a;,,, Of r whenever there existsta> 0 such that
{a,—l,aiQ, e ,aik} - Pgt andaik“ S P>t.

— For every ruler of the form(h; oy, ag, ..., ) — axt1 € R, inst(R) contains
the instance$h; a;, , ai,,...,a;,) — a;,,,, whenever there existsta> 0 such
that{ail,aiz, c. ,aik} - Pgt andaik“ € P.,.

For each: € inst(R), letante(r) denote the antecedentofindhd(r) denote the
head ofr. Furthermore, letlb C {h} be a set containing an abnormal agent health state
h or be equal to the empty set (signifying a normal state of the agent) agd detd
be a qualification of instances of actions. We can now define a causal consequence of a
qualification and a health statdb using R as follows:

Definition 3. Aninstance: € A is a causal consequence of a qualificat@rnc A and
the health statedb using the causal ruleg if

l.aeQor

2. there exists a rule € inst(R) such that
(a) for eacha; € ante(r) eitherq, is a causal consequence@for a; € Ab, and
(b) a = hd(r).

The set of causal consequenceg)aising R and Ab is denoted by r_45(Q).

We have a simple characterization of the set of causal consequépceg®) of a
qualification@ and a health statéb using a set of causal rulds

Observation 1 Cr, 4,(Q) = Cna(inst(R) UQ U Ab).

Here,Cn 4(X) restricts the set of the set of classical consequences of a set of proposi-
tions X to the setlit(A). To avoid cumbersome notation, we will omit the subscripts
R and Ab from the operator” and useC'(Q) to denote the set of consequences of a
qualification@ using a health statdb and a set of causal rulds

We say that a qualificatio@ is closed under the set of rulésand an agent health
stateAb if Q@ = C(Q), i.e,Q is saturated under application of the rules

Proposition 1. The operatorC satisfies the following properties:

1. (inclusion): for even® C A, Q C C(Q)
2. (idempotency): for ever® C A, C(Q) = C(C(Q))
3. (monotony): i) C Q' C AthenC(Q) C C(Q")

Proof. Note thatC(Q) = Cn(inst(R) UQ U Ab) N A. Hence, monotony and inclusion
follow immediately as a consequence of the monotony and inclusiémoMonotony
and inclusion implyC(Q) € C(C(Q)). To prove the reverse inclusion, I€n* (Q) =
Cn(instr(R) U @ U Ab). Then by inclusion and idempotency @f we have

c(CQ)) =Cn*(C(@Q)NA C Cn*(Cn*(Q))NA=Cn*(Q)NA=C(Q)

0
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Thanks to Proposition 1 we conclude that every qualification can be easily extended
to a closed sef’ () of qualifications. Due to the presence of causal rules, we require
every diagnosig) to be closed under the application of rules, that is, in the sequel we
restrict diagnoses to closed séls= C(Q).

Now we define a causal diagnosis as a qualificagbauch that its set of conse-
quences”(Q) constitutes a diagnosis:

Definition 4. Let P = (A, A, <) be a plan,R a set of causal rules and lebs(t) and
obs(t'") be two observations with < ¢’. Then a qualificatior) C A is a causalAb-
diagnosis of P, obs(t), obs(t')) if C(Q) N Py, is a diagnosis of P, obs(t), obs(t')).

Like we defined a minimum diagnosis, we now define two kinds of minimum causal
diagnoses: a minimum causatdiagnosis and a minimum causdfectdiagnosis:

Definition 5. Let P = (A, A, <) be a plan andbs(t) andobs(t’) with t < ¢’ be two
observations.

1. Aminimum causal set diagnosisa causal diagnosi§) such thatj@Q| < |Q’| for
every causal diagnosi9’ of P;

2. Aminimum causal effect diagnosis a causal diagnosig) such that|C(Q)| <
|C(Q")] for every causal diagnosig’.

Maximum informative causal set and maximum informative causal effect diagnoses are
defined completely analogous to the previous definitions using standard diagnosis.

The relationships between the different diagnostic concepts we have distinguished
is partially summarized in the following proposition:

Proposition 2. Let P = (A, A, <) be a plan andbs(t) andobs(¢') witht < ¢’ be two
observations.

1. |Q| < |Q'| for every minimum causal set diagnoglsand minimum closed diag-
nosis@’ of P;

2. |Q| < |Q'| for every minimum causal effect diagnogj)sand minimum closed
diagnosis@’ of P

Proof. Both properties follow immediately from the definitions and the inclusion prop-
erty of C. g

5.2 Causal diagnoses and Prediction

Except for playing a role in establishing causaplanationof observations, (causal)
diagnoses also can play a significant role in pinediction of future results (states) of

the plan or even the attainability of the goals of the plan. First of all, we should realize
that a diagnosis can be used to enhance observed state information as follows: Suppose
that(Q is a causaHb-diagnosis of a plat® based on the observatiooiss(t) andobs(t’)

for somet < t', letobs(t) —¢ ). p (7p,t) and letobs(t’) = (7', ). SinceC(Q)

is a diagnosisg’ andn, agree upon the values of all objects occurring in both states.
Therefore we can combine the information contained in both partial states by merging
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them into a new partial state/, = , L 7. Here, the merge' U 7> of two partial
statest! andz? is simply defined as the partial statevherer; = 7 iff 7/ is defined
for i = 1,2 and undefined else?, can be seen as the partial state that can be obtained
by direct observation at timeand by making use of previous observations and plan
information.

In the same way, we can use this information and the causal conseqU&iiges
derive a prediction of the partial states derivable at tirfes ¢':

Definition 6. Let @ is a causalAb-diagnosis of a planP based on the observations
(m,t)and(x’,t") wheret < t'. Furthermore, _'ebbS(t)f*C(Q);p(Wéw t’? and Iet_obs(t’) =
(7', t'). Then, for some tim&’ > ¢/, (x”',t") is the partial state predicted usir@ and
the observations ifr, L', 1) =5 o). p (", 7).

In particular, ift” = depth(P), i.e., the plan has been executed completely, we can
predict the values of some objects that will result from execuftrand we can check
which goalsg € G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which ggadsG it holds thatr |= g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.

5.3 Complexity and implementation issues

Itis well-known that the diagnosis problem is computationally intractable. The decision
forms of both consistency-based and abductive based diagnosis are NP-hard ([2]). It is
easy to see that standard plan diagnosis has the same order of complexity. Concerning
(minimal) causal diagnoses, we can show that they are not more complex than estab-
lishing plan diagnoses if the latter problem is NP-hard. The reason is that in every case
the verification of@’ being anAb-causal diagnosis is as difficult as verifying a plan
diagnosis under the assumption that theisst o(R) is polynomially bounded in the

size|| P|| of the planP.1° Also note that subset minimality (under a set of rulest( R)

of a set of causes can be checked in polynomial time.

The implementation of the diagnostic process is rather straight forward (see for
instance [13]). First, we have to predict the expected result of the plan keeping of the
actions involved in establishing the value of each object. Second, we determine which
of the predicted values conflict with observed values resulting in conflict sets. Third, we
have to solve a minimal hitting set problem given the conflict sets.

6 Conclusion

We have presented a new object-oriented model to specify plans and to apply techniques
developed for model-based agent diagnosis. We distinguished two types of diagnosis:
minimum plan diagnosis and maximum informative diagnosis to idenfif;n{nimum

sets of anomalously executed actions d@nchfaximum informative (w.r.t. to predicting

1% The reason is that computing consequences of Horn-theories can be achieved in a time linear
in the size ofinstp(R).
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the observations) sets of anomalously executed actions. Assuming that a plan is carried
out by a single agent, anomalously executed actions can be correlated if the anomaly is
caused by some malfunctions in the agent. Therefdirg c@usal diagnoses have been
introduced and we have extended the diagnostic theory enabling the prediction of future
failure of actions.

Currentwork can be extended in several ways. We mention two possible extensions:

First of all, we could improve the diagnostic model of the executing agent. The
causal diagnoses are based on the assumption that the agent enters an abnormal state
at some time point and stays in that state until the agent is repaired. In our future work
we wish to extend the model such that the agent might evolve through several abnormal
states. The resulting model will be related to diagnosis in Discrete Event Systems [7,
12]. Moreover, we intend to investigate plan repair in the context of the agent’s current
(abnormal) state.

Secondly, we would like to extend the diagnostic model with sequential observa-
tions and iterative diagnoses. Here, we would like to consider the possibilities of diag-
nosing a plan if more than two subsequent observations are made, the best way to detect
errors in such cases and the construction of enhanced prediction methods.
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Abstract. A method to recognise agent’s intentions is presented in a
framework that combines the logic of Situation Calculus and Probability
Theory. The method is restricted to contexts where the agent only per-
forms procedures in a given library of procedures, and where the system
that intends to recognise the agent’s intentions has a complete knowledge
of the actions performed by the agent.

An original aspect is that the procedures are defined for human agents
and not for artificial agents. The consequence is that the procedures may
offer the possibility to do any kind of actions between two given actions,
and they also may forbid to perform some specific actions. Then, the
problem is different and more complex than the standard problem of
plan recognition.

To select the procedures that partially match the observations we con-
sider the procedures that have the greatest estimated probability. This
estimation is based on the application of Bayes’ theorem and on specific
heuristics. These heuristics depend on the history and not just on the
last observation.

A PROLOG prototype of the presented method has been implemented.

1 Introduction

When two agents have to interact it is important for each agent to know the
other agent’s intentions because this knowledge allows to anticipate his future
behavior. This information can be used either to help the other agent to do
what he intends to do or to control whether what he does is compatible with his
intention. Even if an agent can never be sure that he knows the other agent’s
intentions an uncertain information is much better than a complete ignorance
when a decision has to be taken.

In this paper a method is proposed to recognise what are the agent’s inten-
tions in the particular context of a pilot that interacts with an aircraft. The first
specificity of this context is that the pilot performs procedures that are very well

* Also student at: Universidad Politenica de Madrid.



defined in a handbook. The second specificity is that the procedures are defined
in terms of commands that have to be performed (like to turn a switch on) and
it is reasonable to assume that the performance of these commands can be per-
ceived thanks to sensors in the aircraft. Then, it is possible to design a system
that has the capacity to observe all the commands performed by the pilot.

Under this assumption the system can compare the sequence of observations
with the procedure definitions in the handbook and it can determine the proce-
dures that match with these observations. The procedures that have the “best”
match are assigned to the agent’s intentions.

To define a method to recognise the pilot’s intentions we have to find solutions
to three independent problems:

1. to select a language to represent the procedures in formal terms,

2. to define a formal characterisation of the procedures that match with the
observations,

3. to define a method to select the procedures that have the “best” match and
are assigned to the agent’s intention.

In a previous work Demolombe and Hamon [9] have proposed solutions to
problems 1 and 2 in the logical framework of the Situation Calculus. The Situ-
ation Calculus is a variant of classical first order logic, that is the reason why it
is more convenient for computational logic than modal logics.

The contribution of this paper is to propose a solution to problem 3 in a
framework that combines Situation Calculus and Probability Theory and which
is based on Bayes’ theorem.

There are many other works that have similar objectives in the field of plan
recognition [11] and many of them make use of probabilities [4,7,1,5] or use
an utility function [13]. Baier in [3] also uses the framework of the Situation
Calculus but without probabilities. Many of them have been designed in the
particular context of natural language analysis [6, 2, 5] or game theory [1].

The original feature in our case is that the pilot’s procedures may allow any
other command in between a sequence of two prescribed commands and it may
be specified that some commands are forbidden. Also it may happen that the
pilot has the intention to perform several procedures in parallel. The consequence
is that problems 2 and 3 are much more complex than the standard problem of
plan recognition.

The paper is organised as follows. In sections 2 and 3 the solutions to prob-
lems 1 and 2 are recalled. In section 4 the method to solve problem 3 is presented.
In that section we start with the analysis of a typical example, we define a general
method to compute probabilities, we define heuristics to estimate the probabili-
ties and finally we apply the method to the example to show that the results fit
the intuitive requirements. Possible refinements or extensions of the method are
presented in the conclusion.

Since the method can be applied to many other contexts we shall use the
general term “agent” instead of “pilot”, and “action” instead of “command”.
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2 A brief introduction to the Situation Calculus and to a
GOLOG extension

The logical framework of Situation Calculus [15] is used to represent the states
of the world and the actions that are performed by the agent.

The Situation Calculus is a typed first order logic with equality (except some
limited fragments that are of second order). In the language there are two kinds
of predicates. The predicates whose truth value may change after performance
of an action are called “fluents”. They have exactly 1 argument of the type
situation which is the last argument. The other predicates have no argument of
the type situation.

For example, we may have the predicates:
nationality(z): the nationality of the aircraft is x.
gear.extended(s): in the situation s the landing gear is extended.
altitude(z, s): in the situation s the aircraft altitude is x.

Here altitude(z,s) and gear.extended(s) are fluents, and nationality(z) is
not a fluent.

The terms of type situation may be constant or variable symbols of the type
situation, or terms of the form do(a, s) where do is a designated function symbol,
a is a term of type action and s is a term of type situation.

For instance, if Sy is a constant of type situation and extend.gear and
retract.gear are constants of type action, the following terms are of type situa-
tion: Sy, do(extend.gear, Sy), do(extend.gear, s) and do(retract.gear, do(extend.
gear, Sp)).

The term do(retract.gear, do(extend.gear, Sp)) denotes the situation where
we are after performance of the actions extend.gear and retract.gear.

As a matter of simplification we use the notation do([as, ..., as], s) to denote
do(an,...,do(ay,s)...).

The grammar of the formulas of the Situation Calculus is defined as usual
for classical first order logics.

A successor relation 2 is defined on the set of situations. Intuitively s < &’
means that the situation s’ is reached from the situation s after some sequence
of action. In semiformal terms, s < s’ is the smallest relation that satisfies the
following properties:

s<s & (s<s)V(s=¢)

VsVs'Va(s' = do(a,s) — s < s')

VsVs'Vs" ((s < §) A (s’ < 8") — (s < §"))

To define the truth value of the fluents in any situation a successor state
axiom has to be given for each fluent. For example, for gear.extended(s) we
have:

VsVa(gear.extended(do(a, s)) < a = extend.gearV gear.extended(s) AN—(a =
retract.gear))

3 In this paper the definition of the successor relation is the only part of the Situation
Calculus that requires second order logic.
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The intuitive meaning of this axiom is that the only action that can cause
gear.extended(do(a, s)) to be true (resp. false) is the action extend.gear (resp.
retract.gear).

The GOLOG language [12] is a programming language for robots but it can
be used for other kinds of agents. Its expressive power is the same as ALGOL
and its semantics is defined in the logic of the Situation Calculus. Programs are
terms that represent complex actions defined with several operators.

Here, for simplicity, we have only considered the operator of sequence (de-
noted by “”), test (denoted by “¢?”) and non deterministic choice (denoted by
“|”). To represent what is called in the following “procedures” we have added
the “negation” operator (denoted by “—”) and the “any sequence of actions”
term (denoted by “o”). The motivation of this extension can be explained with
the following example.

Let us, consider the procedure called “fire on board”, which is described
for a small private aircraft. The procedure says that in case of engine fire the
pilot 1) turns off fuel feed, 2) sets full throttle, and 3) sets mixture off. These
three primitive actions, or commands, are respectively denoted by fuel.of f,
full.throttle and mizture.of f, and the procedure is denoted by fire.on.board.

However, it is implicit in the procedure definition that between actions 1)
and 2) or between 2) and 3) the pilot can do any other action. For example, he
can call air traffic control. It is also implicit that after turning off fuel feed he
must not turn on fuel feed. That is just common sense for a human being but
it has to be made explicit to define a formal method that can be used by the
system which observes the pilot.

Then, in the modified GOLOG language the “fire on board” procedure is
represented by:

fire.on.board def fuel.of f; (o fuel.on); full.throttle; (o/ fuel.on); miature.of f
where a1 /s is an abbreviation for ai; — (03 ae; o) which intuitively means that
the sequence of actions which is a performance of oy must not contain a sequence
of actions which is a performance of as.

In the case of programs for an artificial agent there is no need for the term
o nor for the operator “/” because an artificial agent only does what is
specified in the program. That makes the basic difference between a program
and what is called here a “procedure”.

The formal definition of the modified GOLOG language is :

— atomic actions, test actions and o are procedures,
— if oy and ay are procedures, then (aq; ), (a1|as) and (o — «3) are proce-
dures.

The formal definition of the procedures is defined by formulas of the Situation
Calculus language. These formulas are denoted by the property Dop(c, s, s’)
whose intuitive meaning is:

Doy(a, s,s") = ' is a situation that can be reached from the situation s after
performance of the procedure «.

The formal semantics of Dop(a, s, s") is:
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Doy(a,s,s') = s =do(a,s) if a is an atomic action.
Doy(o,s,") ©f s<s
Doy, (47,s,5") ef sJANS =s

Doy(aq — aa, s,") ef Doy(au,s,s") N —=Dop(az, s, s)
This modified GOLOG language gives a solution to the problem 1 that we
have mentioned in the introduction.

3 Doing a procedure

To characterise the fact that a sequence of performed actions “matches” a partial
performance of a procedure, in the sense that this sequence can be interpreted
as a partial performance of the procedure, we use the property Doing(a, s, s’).
However, this property does not guarantee that the agent is performing this
procedure.

In informal terms the property Doing(a, s, s’) holds if the three following
conditions are satisfied:

1. The agent has begun executing a part o’ of o between s and '

2. The agent has not completely executed a between s and s'.

3. The actions performed between s and s’ do not prevent the continuation of
the execution of a.

In a first step we define the property Dom(«, s, s’) whose intuitive meaning
is that we have Do, (a, s, s”) and there is no shorter sequence of actions between
s and s’ such that we have Do, for this sequence. We have:

Do, (a, s, 8") def Doy(a, s,8") A =3s1(Dop(c, s,51) As1 < ')

Then, we define the property Dos(a, s, s’) whose intuitive meaning is that
the sequence of actions between s and s’ satisfies the above conditions 1, 2 and
3. We have:

Dos(a, s,8") 2ef 3o/ (start(a/, ) A
s1(s1 < 8" A Doy, (e, s,81)) A
—3s2(s2 < ' A Dop(a, s, $2)) A
Js3(s’ < s3 A Dop(a, s, 83)))
where start(a’, ) means that o can be reformulated into a procedure of the
form: (¢/;@”)|@ which has the same semantics as «, i.e. VsVs'(Dop(a,s,s’) <
Dop((a';0”)|B,5,5')).

The condition 1 is expressed by 3o/ (start(a’, a)A3s1(s1 < S'ADo,, (¢, s, 51)),
the strict interpretation of condition 2 is expressed by —3sa(s2 < s’ADop,(a, s, $2)),
and the condition 3 is expressed by Js3(s’ < s3 A Dom(a, s, $3)).

Finally, the definition of Doing(a, s, ') is:

Doing(a, s, s) def Js1(s < s1 A Dos(a, s1,8")) A =Tsa(s < s2 Asa < 81 A
Dos(av, 82, 51)))
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The condition 3s1(s < s1ADos(a, 81, 8")) expresses that there is an execution
of a that has begun in s; and has not ended, and the condition =3s2(s < s3As2 <
s1 A Dog(a, s2,51)) expresses that there is no previous « execution which has
started and not ended before s.

4 Intention recognition

This section presents a method for choosing between several procedures, that
satisfy the Doing property, the one that can be assigned by the system to the
agent’s intention.

This assignment is never guaranteed to correspond to the true agent’s inten-
tion, and due to this uncertainty it is sensible to make use of probabilities to
make the choice.

Before going into the formal presentation of the method let us give a simple
example to intuitively show what are the basic principles * and assumptions of
the method.

4.1 A simple example

Let us consider the three following procedures.
a=a;o;b;0;5c

B=d;o;e

v =a;0;f

Let us assume that we are in the situation s5 where the following sequence
of actions has been performed: [f,a,d, b, ], that is in formal terms:
s = do([f,a,d,b,c], s0).

In the situation s; = do(f,so) there is no procedure which is compatible
with the performed action f. We have =Doing(«, so, s1), ~Doing(83, so, s1) and
=Doing(y, so, S1).

We have adopted the following assumption.

Assumption H1. If an agent has the intention to do a procedure « then he
does the actions that are defined by the procedure a.

According to H1 in s; the system knows that the agent did not have the
intention to do « in sy, because if he had the intention to do « in sy he would
have started to do a and he would have done the action a in s; instead of f.
The same for g and 7.

Nevertheless in sg the system can accept that the probability that the agent
has the intention to do « is not equal to 0. Then, we have accepted the additional
assumption:

Assumption H2. If the agent in the situation s; is not doing «, in the sense
that =Doing(«, so, i), then in s; the probability that he has the intention to do
« is independent of s;, and this probability is denoted by ().

4 These principles are expected properties and they should not be confused with the
assumptions.
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Let us define the following notations.

P(¢): probability that ¢ holds.

Int(e, s;): in the situation s; the agent has the intention to do a 5.

In formal terms H2 can be expressed by:

VsVs'Va(s < s’ A =Doing(a, s,s") — P(Int(a,s’)) = w(a))

Since for any procedure « we have —Doing(a, sg, sg), from H2 we have:
P(Int(a, s0)) = P(Int(a,s1)) = w(a), P(Int(B,s0)) = P(Int(B,s1)) = w(B)
and P(Int(v,so)) = P(Int(y,s1)) = 7(7).

In the situation s2 = do([f, a], so) we have =Doing(8, sg, s2) and P(Int(3, s2))
= m(8), and now we have Doing(a, sg, s2) and Doing(~, so, s2)-

The fact that the action a has been performed is a good argument for the
system to believe that the agent has the intention to do a and to believe that he
has the intention to do . Then we should have P(Int(«, s2)) > P(Int(a, s1))
and P(Int(v,sz2)) > P(Int(vy, s1)).

It is sensible to assume that P(Int(c,s;)) and P(Int(vy,s;)) increase in the
same way from s; to sa.

So, if m(a) = w(B) = w(7), Int(c, s2) and Int(y, s2) have the same and the
greatest probability and the system believes that the agent has the intention to
do o and that he has the intention to do 7.

Let us use the following notation.

BInt(a,s;): in the situation s; the system believes that the agent has the
intention to do a.

Using this notation we have: BInt(«, s2), ~BInt(f3, s2) and BInt(v, s2).

We have adopted the following general assumption.

Assumption H3. In a situation s; such that Doing(«, so, $;), if there is no
procedure 3 such that Doing(83, so, s;) and P(Int(3,s;)) > P(Int(c,s;)), then
the system believes in s; that the agent has the intention to do a (i.e. we have
BInt(a, s;)).

H3 can be reformulated as:

BInt(a, s) iff Doing(c, so, s) and there is no procedure 3 such that P(Int(3, s))
> P(Int(ay, s))

In the situation s3 = do([f, a, d], so) we have Doing(«, so, s3), Doing(3, so, $3)
and Doing(7y, so, 83)-

In s3 we can assume that P(Int(8,s;)) has increased from sy to s3 in the
same way as P(Int(q,s;)) and P(Int(vy,s;)) have increased from s; to sa.

For the procedures o and ~, in sy the agent has the choice between doing
the next recommended action (that are respectively b and f) or doing any other
action. We have assumed that if he does not do the recommended action, then
the probability to do the corresponding procedure decreases, because the last
observed action does not confirm that he has the intention to do this procedure.

Then, if 7(a) = 7(3) = 7(y) we have: P(Int(a,s3)) < P(Int(3,s3)) and
P(Int(v,ss)) < P(Int(3,s3)), and therefore we have BInt(f3, s3), ~BInt(a, s3)
and —BInt(v, s3)).

5 To be more precise we should say that the agent has the intention to reach a situation
where a has been done.
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In the situation s4 = do([f, a, d, b], sq) we have Doing(«, so, 84), Doing(8, sa,
s4) and Doing (7, So, S4)-

In that situation the action b is a recommended action for « but it is not a
recommended action for . Then, if 7(«) = 7(v) we should have P(Int(c, s4)) >
P(Int(v, s4)).

If we compare the procedures « and 3 in s4, there are two performed ac-
tions (a and b) that are recommended in «, and there is only one (a) which
is recommended in @. The number of performed actions that are not recom-
mended is the same for a and 3 (action d for « and action b for ). Therefore,
if 7(a) = w(B) we should have P(Int(a,ss)) > P(Int(f,ss)). Then, we have
Blint(a, s4), ~BInt(S, s4) and ~BInt(v, s4).

In the situation s5 = do([f, a, d, b, c|, so) we have =Doing(«, so, 85), Doing (S,
S0, 85) and Doing(7, so, S5)-

The number of recommended actions is 1 for # and v in s5, but the number of
not recommended actions is 3 for v and 2 for 5. Then, if 7(a) = 7(8) = 7(y) we
should have P(Int(3,ss)) > P(Int(v,ss)) and P(Int(3,ss5)) > P(Int(a,ss)).
Therefore we have BInt(8, s5), ~BInt(a, s5) and —~BInt(y, s5).

From this example we can derive some general principles that are expressed
with the following terminology.

In a procedure definition we call an action a prescribed action if that action
explicitly appears in the procedure and it is just preceded by an explicit action.

For example, if o has the form: ...;a;b;... then this occurrence of b is a
prescribed action in a. Notice that in a given procedure some occurrences of b
may be prescribed actions and others not, like in a = ¢; o; b; a; b.

In a procedure definition we call an action a recommended action if that
action explicitly appears in the procedure and it is just preceded by a term of
the form o or o/f.

For example, if « has the form: ...;05a;... or ...;0/(bl¢); ;... then this
occurrence of a is a recommended action in a.

Let us call A the set of actions that can be done by the agent and can be
observed by the system.

In a procedure definition we call an action a tolerated action if the procedure
has the form: ...;0;a;... and this action is in A — {a}.

For example, if A = {a,b,¢,d,e} and « has the form: ...;0;a;..., then the
set of tolerated actions for this occurrence of o is {b, ¢, d, e}.

In a procedure definition we call an action a restricted tolerated action

if the procedure has the form: ...;0/(a;,|...|a;);a;... and this action is in
A—A{ay,-..,a;,a}.
For example, if « has the form: ...;0/(b|d); a; ... the set of restricted toler-

ated actions for this occurrence of o is {c, e}.
With these definitions we can formulate our basic principles in that way.
Principle A. If in the situation s; the last performed action is a pre-

scribed action of «, then P(Int(c,s;)) should “strongly” increase with respect
to P(Int(a, si—1)).
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Principle B. If in the situation s; the last performed action is a recom-
mended action of a, then P(Int(a, s;)) should increase with respect to P(Int(«,
$i—1)), but it should increase less than in the case of a prescribed action.

Principle C. If in the situation s; the last performed action is a tolerated
action of «, then P(Int(«, s;)) should decrease with respect to P(Int(«, si—1))-

Principle D. If in the situation s; the last performed action is a restricted
tolerated action of o, then the fact that P(Int(q, s;)) increases or decreases with
respect to P(Int(c,s;—1)) depends on the cardinality of the set of restricted
tolerated actions.

We also have adopted the following assumption about the evolution of the
fact that the agent has the intention to do a procedure a.

Assumption H4. In a situation s; such that we have Doing(«, so, s;) it is
assumed that the agent has in s; the intention to do « iff he has the intention
to do @ in s;_1.

The assumption H4 is expressed in formal terms as follows.

(H4) VsVs'Vs"VaVa((Doing(a, s,s") A" = do(a,s’)) —

(Int(a, 8") < Int(a, s")))

H4 is logically equivalent to the conjunction of H’4 and H”4.

(H'4) VsVs'Vs"VaVa(Doing(a, s, s")A\s" = do(a, s")AInt(a, s') — Int(a,s"))

(H"4) VsVs'Vs"VaVa(Doing(a, s, s")As" = do(a, s )ANInt(a, s") — Int(a, s'))

The assumption H’4 means that the agent’s intention is persistent as long as
the procedure « is not completely performed. That corresponds to the notion of
intention persistence proposed by Cohen and Levesque in [8] (see also [14]).

The assumption H”4 corresponds to a different idea. This idea is that if the
action a performed by the agent is consistent with the fact that he is doing o and
in the situation s” the agent has the intention to do «, then he has performed
the action a because in s’ he had the intention to do a.

4.2 General method to compute the probabilities

To present the general method we shall use the following notations.

A ={ai,az,...,an}: set of actions that can be performed by the agent and
that can be observed by the system.

We adopt the following assumption.

Assumption H5. It is assumed that in the language definition the set of
atomic action constant symbols is A.

The assumption H5 intuitively means that the actions performed by the
agent that cannot be observed by the system are ignored by the system. This
assumption is consistent with the fact that what the system believes about the
agents’ intentions is only founded on his observations.

0;: ith observation action performed by the system.

aj, = obs(0;): a;, is the action performed by the agent that has been observed
by the system by means of the observation action o;.

O;: short hand to denote the proposition aj, = 0bs(0;).

Ol,i d:ef O1NOa N...NO;
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O1,0 def true

Sg: initial situation.

S; = do(aji, Si—l)

P(Int(a,s;)|0n,): probability that in the situation s; the agent has the in-
tention to do « if the sequence of observations is O ;.

From Bayes’ theorem we have:

P(O1,i|Int(a,s; P(Int(a,s;
(1) P(Int(c, 5:)|Or,;) = FOuntG g nta.c0)

From (1) we have:
(2) P(Int(a,s:)|01,) = P(OiAol’i_113‘(1355\08?3331)(Int(a’Si))
Then, we have: 1

_ P(O4]01,i—1”nInt(a,s4)) P(O1,i—1]Int(a,s:)) x P(Int(a,si))
(3) P(Int(a,s;)|01,:) = OO X =B

If —Doing(a, sq, $;):

From H2 we have: P(Int(a,s;)|01,:) = P(Int(«, s;)). Then we have:
(4) P(Int(a,s;)]|01,:) = 7(«)

If Doing(a, so, si):

From H4 we have: Int(«, s;) < Int(a,s;_1).

Then, from (3) we have:

_ P(OHOl,i,l/\Int(a,sifl)) P(OL,-,l\Int(a,si,l))XP(Int(a,sifl))
(5) P(]nt(avsi)loLi) = P(0;]01,i-1) X P(O1,i-1)

Therefore we have:

(6) P(Int(a5:)|01:) = HGgmAs2=) x P(Int(a, 5i1)|01,i-1)

If we adopt the notations:

num;(«) def P(Oi|0171‘71 A Int(a, 8i—1))

deni(a) d:ef P(Oi|017i,1)

Fila) gy

We have:
(7) P(Int(a 5i)|01,i) = FZ(Oé) X P(Int(a, 3i71)|01,i71)

The formula (7) allows to regress the computation of P(Int(«, s;)|O1 ;) until
a situation s; where we have =Doing(a, sg, s;) ©

4.3 Heuristics to estimate the probabilities

To define heuristics to estimate the value of F;(a) we have restricted the set of
procedures to procedures of the form:

a=A X050 Ay Dy Ay As
where each A, denotes an atomic action in A and X}, either is absent or denotes
a term of the form o/(a;,|...|a;) where each a;; is in A and | may be equal to
0. This form will be called in the following: “linear normal form”.

Notice that this form is not a too strong restricted form because a procedure
can be transformed by repeatedly applying the transformation rule that trans-
forms aq; (az]as); au into (aq; ag; au)|(ar; as; aq). At the end we get a procedure
in the form o = ai|az|...|ap. Then, the only difference between each «; and
a procedure in linear normal form is that the Ags may denote either an atomic

6 Notice that for any procedure o we have ~Doing(a, so, 50).
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action or a test action, and the Xjs, when they are not absent, have in general
the form o/ where 8 may be any kind of procedure.

Now we are going to define the estimation of the term F;(«) in the case where
we have Doing(a, so, $i)-

The estimation of F;(a) depends on the part o} ; of a which has already
been performed in the situation s;—j. This part is defined by the property
Done(a,_4, a, S0, 8;) where the property Done is defined as follows.

Done(d, a, 8, 8") def Doing(a, s,8") A start(a/,a) Ads1(s < 81 < 8 A
Dog(cv, 31,5") AN Doy(d/, s1,5"))

In this definition the condition Dos(a, s1,s’) guarantees that the part of «
that is being performed in s has started his performance in s1, and the condition
Dop(d, 51,5") guarantees that there is no part of « that is longer than o’ that
has been performed between s; and s'. Done(d’, «, s, ") intuitively means that
o’ is the maximal part of o that has started between s and s’ and that has ended
in s'.

For instance, in the previous example in so we have Doing(a, sq, $2) and for
oy = a we have Dog(a, 51, s2) and Doy (v, s1,2). In s3 we have afy = a; 0 and
in s4 we have o) = a; 03 b.

To estimate F;(«) we have accepted the following assumption.

Assumption H6. It is assumed that the ith observation 0; is independent
of the previous observations and each action in A has the same probability to
be observed.

In formal terms H6 is expressed by: den;(a) = P(0;|01,;-1) = P(0;) = +.

We shall use the notation O; = Ay to express that the action a;; observed
by the observation action o; is the atomic action denoted by Ag, and we use the
notation O; € X} to express that a;; is in the set A—{a,,...,a;, a1}, where
ap+1 is the action denoted by Agy1.

The terms num;(«) and F;(a) have to be estimated only in the case where
we have Doing(c, so, s;). We have to consider different cases.

Case 1. We have =Doing(«, so, $i—1)-

In that case o, _; = A; and, from the assumption H1, Int(a,s;—1) and
Doing(a, so, si) A ~Doing(a, so, s;—1) imply that in s; the agent has performed
the action A, and the observed action in O; is A;. Then, we necessarily have
0, = A;.

Therefore we have num;(a) = 1 and F;(a) = N.

Case 2. We have Doing(a, so, $i—1).

— Case 2.1. o_; has the form of | =...; 4.

e Case 2.1.1. « has the form
a=...;Ag; Apr1;. ...
In that case X} is absent in «. From the assumption H1, Int(a, s;—1)
implies that the action performed in s; is Ag41. Then, we necessarily
have Ol = Ak+1.
Therefore we have num;(a) =1 and F;(a) = N.
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e Case 2.1.2. « has the form
a=...;Ag; Xr; Agg;-- -
Case 2.1.2.1. O; = Ajy1-
The general form of Xy is o/(as,]. .. |a;,)-
According to principle B it is much more likely that the action performed
by the agent in s; is the recommended action Agy; than any restricted
tolerated action defined by X.
Then we have num;(a) = 1 — € where the value of € is defined in function
of the application domain and is supposed to be “small” with respect to
1.
We have Fj(a) = N x (1 —¢).
Case 2.1.2.2. O; # Ag41.
Here we have adopted the following assumption.
Assumption H7. It is assumed that when the agent has the intention
to do « all the restricted tolerated actions have the same probability to
be performed by the agent.
According to H7 any action in A — {a;,,...,a;,ar+1} has the same
probability to be done. Then, we have”: num;(«)
We have F;(a) = 7]\,7](\;“)
— Case 2.2. ¢ has the form o ;| =...; %}.

Case 2.2.1. O; = Ag41.

We are in the same type of situation as in the case 2.1.2.1. Then we have

num;(a) =1 — € and F;(a) = N x (1 —e).

Case 2.2.2. O; # A1

We are in the same type of situation as in the case 2.1.2.2. Then we have

num;(a) = =7 and Fi(a) = % X €.

- €
= N=(+1)-
X €.

In the case where the action that has been performed by the agent in s; is
a prescribed action (cases 1. and 2.1.1.) we have F;(«) = N. This conforms the
principle A.

In the case where the performed action is a recommended action (cases
2.1.2.1. and 2.2.1.) we have Fj(a) = N X (1 — ¢). To fulfill the principle B,
that is: F;(c) > 1, we have to assign to € a value such that e < &1,

In the case where the performed action is a tolerated action (cases 2.1.2.2.
and 2.2.2. and [ = 0) we have F;(a) = 75 X e. From the assumption ¢ < £
we have F;(a) < 1 and this fulfills the principle C.

In the case where the performed action is a restricted tolerated action (cases

2.1.2.2. and 2.2.2. and [ > 0) we have Fi(a) = x—{rqy X €

Therefore we have Fj(a) < 1 iff € < W (therefore we also have € <

M), and we have Fy(a) > 1 iff € > W (and this is consistent with
N-1
€< T)
Therefore, according to principle D we may have either F;(«) < 1 or F;(«) >
1 depending on the values of € , [ and V.

" Notice that the case N — (I 4 1) = 0 can be rejected because if I = N — 1 there is
only one restricted tolerated action and the agent has no choice offered by Y.
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4.4 Coming back to the example

The method we have presented can be used to compute iteratively the values
of P(Int(a, 5i)|01,i)7 P(Int(,b’, Si)|01’7;) and P(Int('y, Si)|01)7;).

If we use the notations IT; () = P(Int(w, s:)|01,), IL;(8) = P(Int(8, :)|01.:),
II;(v) = P(Int(v,5:)|01,;), and R = N x (1 —¢), for recommended actions, and

T= % x € for tolerated actions we get the following table

Si 11i(a) 11:(B) 11 ()

s wla) ~(3) (1)

5 () ~(3) (1)

$2 N x () w(0) N x 7(v)

s3l| N xT xnw(a) N xm(B) |NxTxmx(y)

4[N x RxT x w(a)| N x T x w(8) [N x T? x 7n(7)

S5 () N xT? x 7(B)|N x T3 x n(v)

We have N > R>1and T < 1.

If we have m(a) = () = w(y) we can determine what the system believes
about the agents’ intentions in these situations. As expected in 4.1 we get:

In sp we have BInt(a, so), BInt(3,s¢) and BInt(y, so).

In 51 we have BInt(a, s1), BInt(3,s1) and BInt(vy,s1).

In s3 we have BInt(a, s3) and BInt(y, s2).

In s3 we have BInt(0, s3).

In s4 we have BInt(a, s4).

In s5 we have BInt(f, ss).

5 Conclusion

We have presented a method to assign intentions to an agent which is based
on the computation of the estimation of the probability that an agent has the
intention to perform a procedure.

There are two parts in the computation method. The first part (section 4.2)
is general and is based on the assumptions H1-H4. The second part (section 4.3)
is based on heuristics and on the additional assumptions H5-H7 and requires to
know the value of () for each .. The values of N and [ are determined by the
application domain and the value of € can be tuned by a designer.

A difference with other methods for plan recognition is that in the procedures
we may have terms of the form /3. The property Doing allows the selection of
the procedure that matches the observations O1,;. To estimate the probability
of the occurrence of the next observation O; we consider the part o) ; of the
procedure « that has already been performed. Therefore the estimated probabil-
ities depend on the history and not just on the previous observation O; ;. This
is an important original aspect of the method.

The computation cost of the estimated probabilities and of the evaluation of
the properties Doing and Done is linear with respect to the number of observa-
tions for a given procedure. That makes the computation very fast.
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Finally, it is worth noting that a preliminary version of the method has been
implemented in Prolog [10]. This implementation was of great help to check our
intuition on simple examples.

Future works will be:

1) to remove the too strong assumption H6 about the independence of the ob-

. . L P(0;]01.;—1 AInt(a,si_
servations O; in order to have a better estimation of (2! 1;(’10-1‘017% (S’S’ V)
i yi—

2) to guarantee that after a long sequence of observations of tolerated actions

P(Int(w,s;)|01,) is never lower than 7(a) and

3) to allow test actions ¢? and temporal conditions in the procedure definitions.
Acknowledgment. We are very grateful to G. Eizenberg for his help in

Probability Theory. If there are some errors they are the own responsibility of

the authors.
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Abstract. This paper studies the notion of ability and its relation with
the notion of action in a multi-agent context. It introduces the distinction
between two notions respectively called “theoretical ability” and “abil-
ity”. The main contribution of this paper is a model of these notions in
the Situation Calculus.

1 Introduction

Allocating tasks or planning in a multi-agent context [8], [3], requires taking into
account what the agents are able to do, i.e., the agent abilities, in order to assign
tasks to agents who are able to perform them.

The notion of ability must then be modelled and this implies to explicit the
parameters which define this notion.

Obviously, the agent itself, or the group of agents, is one of these parameters.
But what is the nature of what the ability applies on? For instance, when we
say that John is able to paint the door, do we mean that John is able to perform
a particular action which consists in applying paint with a specific brush on the
door? Or do we mean that John is able to see to it that the door is painted,
by the means he wants, for instance by delegating this task to someone else?
Modelling ability thus implies modelling actions.

In the literature, there are two main approaches to action theory. The first
one consists in giving in the language means to explicitly represent actions. This
is the case of dynamic logic for instance [9], which offers modal operators to speak
about the execution of an action, and also the execution of an action by an agent.
This is also the case of situation calculus [14, 16], which allows one to represent
actions, their preconditions and their effects, but also situations, considered as
results of the successive application of actions in an initial situation. On the
contrary, actions are not explicitly represented in the second approach. The
operators defined there only allow to express the fact that the agent sees about
some property to be true (cf. the operator stit [11] and the notion of agency in
7).

As the notion of ability is strongly linked to the notion of action, it has
been studied according to these two approaches. For instance, the multi modal
dynamic logic KARO [18] aims at defining agent ability to perform an action
according to the first approach. Primitive concepts are the agent’s knowledge,



its capacity to perform an action, the effects of an action and the opportunity
associated with an action. Ability and opportunity are two intertwined notions,
we will come back on it later.

Concerning the second approach, the notion of ability does not bear on ac-
tions, but on the fact that a property is true [10,7]. These two formalisms are
based on propositional modal logics. In [7], Elgesem defines ability and action as
primitive notions. He considers a function f which determines for a given world
w and a goal ¢ the worlds in which the agent has realized its ability to see to it
that ¢ is true from w. Thus, an agent is able to see to it that ¢ is true if and
only if the set of worlds f(w, ) is not empty. With this definition, ability and
action, which is also defined by f, are two binded notions. For instance, if an
agent sees to it that ¢ is true, then this agent is able to see to it that ¢. In [10],
Horty uses temporal models to represent actions: an agent sees to it that ¢ is
true at a moment m if it restricts the “histories” which m belongs to in order
that ¢ is true. The ability for an agent to see to it that ¢ is true is defined as
the possibility (in the classical sense, see [2]) for the agent to see to it that ¢ is
true. Let us notice that with this formalism, Horty avoids several paradoxes. In
particular, it cannot be deduced that if ¢ is true, then the agent has the ability
to see to it that .

We must also mention [12], in which the authors use the situation calculus to
model the notion of “ability to reach a goal”, i.e., “ability to make a proposition
true”. Two definitions are given in a mono-agent context. According to the one
the authors find the simplest to use, the agent has the ability, in a situation s, to
make ¢ true (i.e., the agent is able to reach the goal ) if there exists a sequence
of actions such that the agent knows in s that executing these actions will make
o true. In other terms, the agent has the ability to make ¢ true if he knows a
plan to achieve .

This brief state of the art shows that there is no consensus on what the
ability applies on. However, we find in the literature several points of agreement
relatively to the notion of ability.

First, the notion of ability must not be confused with the notion of possibility
nor with the notion of permission [17]. These possible confusions are due to
ambiguities of the natural language. For instance, the sentence “I can open the
door” is sometimes used to say “I am able to open the door” according to the
notion of ability we study here. But this sentence is also sometimes used to say
“I have now the possibility to open the door” (because, for instance, the door is
now unlocked), but this does not mean that I am able to do so. Here, it refers to
a notion of possibility. Finally, this sentence is sometimes used to mean “I have
the permission to open the door”, which still does not imply that I am able to
do so and which refers here to a deontic notion.

Secondly, several people agree on the fact that two kinds of ability must be
distinguished [17,18,5,1].

One can first distinguish what is called “generic ability” by some people (or
“ability” by others) and which refers to the agent’s competences to perform an
action in normal conditions. “I can open the door” means here that I know what
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to do to open the door, independently of my current intellectual or physical state
and of the current state of the world. Thus, with this point of view, I can say “I
am able to open the door” even if my arms are broken or the door is locked.

One can also distinguish what is called “occasional ability” by some people
(or “pragmatic possibility”, or “opportunity to exercise an ability” by others)
and which refers to the current situation. Here, “I can open the door” means
that I have the generic ability to open the door and the current situation is such
that conditions are favourable for me to use this generic ability (for instance,
my arms are not broken and the door is unlocked).

Finally, in a multi-agent context, one of the main problems is to define the
notion of ability relatively to a group of agents, and in particular to infer the
ability of the group from the abilities of the individuals of the group. For instance,
what are the conditions for saying that a group of people is able to paint the
door? Or a group of people is able to first sand the door, then to paint it? The
problem is not trivial since the notion of ability previously called “occasional”
is a dynamic notion which depends on the state of the world in which it is
evaluated. But in a multi-agent context, the dynamic of the world is hard to
foresee because several agents may change the world.

This paper presents a preliminary study of the notion of ability in a multi-
agent context. As far as we know, no previous work has already attacked the
same question in a multi-agent context. In particular, it must be noticed that
the notion we are trying to model here is different from the one Pauly has
studied [15]. Indeed, in his work “an agent (or a group of agents) can bring
about a proposition” means that this agent (or group of agents) has a (collective)
efficient strategy which makes this proposition true, whatever the other people
do. In particular, the logic defined by Pauly does not apply when a first agent
can bring about a proposition and another one can bring about its contrary.

This paper is organized as follows. In section 2, we informally discuss some
requirements about the notion of ability. In section 3 we propose a formal model,
in the Situation Calculus, of concepts related to ability and we justify the use of
such formalism. Some properties of this model are given in 4, and an example
is detailed in 5. Section 6 presents an implementation of our modelling and
section 7 is devoted to a discussion and presents some perspectives.

2 Informal requirements about ability

Our modelling lies on the following choices:

— The ability we focus on bears on actions. We aim at characterizing the mean-
ing of being able to perform actions, i.e., to perform a procedure [6].

— We aim at explicitly representing actions, their preconditions and their ef-
fects. We consider the general case when some primitive actions may require
several agents to be performed (for instance, lifting an heavy door requires
two agents).

— We aim at defining the ability of an agent to perform an action as the
combination of its competences and some favourable conditions that allow it
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to perform that action. But we also aim at making a difference between the
conditions which are related to the agent only from those which are not. For
doing so, we introduce an intermediary notion called “theoretical ability”.

2.1 Model of action

In our model of action, any primitive action is specified by its preconditions
which are the conditions under which it can be performed, independently of any
agent. When these conditions are true, we say that the action is possible [16].

Ezample 1. For instance, “painting” is only possible if there is some paint and
a brush.

2.2 Model of ability

In our model, the primitive notion is the notion of competence described as
follows:

Competence Competence represents the knowing-how of the agent (or agents)
relatively to an action. This knowledge may be inborn or may result from a
learning phase. In our model, this information is considered as primitive.

For instance, we will have initial data like: “John is competent to paint a
door” or “John and Peter are competent together to lift the door”. The first
sentence means that John knows the successive gestures he has to make so that
the door is painted. The second sentence means that they both know how to
coordinate their gestures in order to lift the door.

In this work, we will assume that the competences of the agents can not be
deleted: once an agent is competent to perform an action, he will always be.
This assumption seems to be justified in many applications with rather short
temporal horizon where it can be assumed that the agents do not loose their
competences. As we will see, this assumption can be easily removed.

It must be noticed that this notion of competence is different from the one
Cohen and Levesque consider in [4], where, if an agent competent for a propo-
sition p believes p, then p is true.

Theoretical ability From the notion of competence,we first define the notion
of theoretical ability as follows:

Definition 1. Let A be a non empty group of agents (possibly a singleton) and
a be a primitive action. A is theoretically able to perform o if:

1. A is competent to perform «
2. some conditions, related to the agents of A, are true.

Remember that competence is considered to be a primitive notion. The con-
ditions expressed in point 2 concern the agent (its physical state for instance),
but not all the environment.
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Example 2. For instance, an agent is theoretically able to paint a door if it is
competent for paint a door and if it is not tired.

Notice that this notion is close to the notion of ability of [18].

Ability The notion of ability is finally defined from the notion of theoretical
ability by taking into account the conditions which define the possibility to
perform the action.

Definition 2. Let A be a non empty group of agents (possibly a singleton) and
a be a primitive action. A is able to perform a if:

1. A is theoretically able to perform «
2. « is possible.

Notice that the notion of possibility in this definition is the one defined by
Reiter in [16]. The possibility here is a set of conditions concerning the state of
the world excepting the agent.

Ezxample 3. For instance, an agent is able to paint a door if it is theoretically
able to paint the door (i.e, competent for painting the door, not tired) and if
there is some paint and a brush.

This notion of ability is a kind of occasional ability in the sense of section 1.

It can also be noticed that the previous condition “« is possible” is very close
to the notion of “opportunity to exercise an ability” mentioned in [5], as well as
the one mentioned in [18]. It means that, in our approach, an agent is able to
perform an action if it has the opportunity to exercise the theoretical ability to
perform this action.

2.3 Extensions to more complex actions

Considering only primitive actions is not enough and we must also consider more
complex actions obtained by composition of primitive ones. In this preliminary
work, we focus on sequences (like for instance: “lift the door, then paint it”.)

We would like to validate the following assertion (cf. [18]): agent a is able
to perform the sequence a then (3 if a is able to perform « and, once a has
performed «, a is able to perform .

Ezxample 4. For instance, assume that sanding a door is tiring. Then, we would
like to deduce that John is not able to sand then to paint the door (i.e, not able
to perform the action “sand then paint”). Indeed, even if John is able to sand
the door, once he will have sanded it, he will be tired. Thus, he will not be able
to paint the door.
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2.4 Deriving ability of a group from abilities of individuals

In a multi-agent context, it is necessary to extend these previous notions for a
group of agents. We will say that a group of agents is able to perform a primitive
action if one of its sub-group (possibly a singleton) is able to perform it. Notice
that in some cases, only a subgroup may be competent to do some action: an
agent does not have the competence to carry a piano, but a group of three agents
may have it.

As for the sequences, we would like to validate the fact that a group is able
to perform the action “a then (” if one of its sub-group is able to perform «
and, once this sub-group has performed «, the group is able to perform 3.

Example 5. Consider now that Peter is also competent to paint the door and is
not tired. Then the group {John, Peter} is able to sand the door then to paint
it. Indeed, John is able to sand it (see previously) and, once John has sanded
the door, the group is still able to paint the door (because Peter has remained
not tired).

3 Model of ability in the Situation Calculus

3.1 The Situation Calculus

We suggest to use the Situation Calculus to model these notions for two reasons:

— firstly, this formalism is a good candidate for modelling actions since it offers
means to explicitly express preconditions and effects of actions;

— secondly, an important problem underlying this present work, the frame
problem (i.e, how to express what are the changings induced by the perfor-
mance of an action by an agent and how to express what remains unchanged),
has been provided a solution in the Situation Calculus by Reiter.

3.2 The language

We consider a first order language L which will allow us to model and reason
about actions and ability. In this language, the changes of the world are resulting
from action performances. It is defined as follows:

— a set of constants to represent agents A.
— a set of functions and constants used to represent primitive actions, with
parameters or without.
For instance the term “paint(x)” will represent the action “to paint the
object x”.
A unary predicate primitive(.) used to list the primitive actions.
Thus, primitive(paint(x)) means that paint(z) is a primitive action.
— a binary function ; used to represent the sequence of actions.
sand(x); paint(x) will represent the action which consists in sanding the
object x then painting it.

236



— a constant Sy used to represent the initial situation.

— a ternary function do.
do(A, paint(x), s) represents the situation which follows from the situation
s, when the group of agents A has painted the object .

Notice that here, unlike the “classical” Situation Calculus, the agent is not
a parameter of the function which represents the action, but is a parameter
of the function do which represents the performance of the action.

— a set of predicates called relational fluents which represent properties which
may be changed by the performance of an action. The last argument of a
fluent is a situation.

For instance, painted(door,Sp) expresses that the door is painted in the
initial situation Sy.

— a particular binary fluent Poss used to express that an action is possible in
a situation.

— a particular binary fluent is competent and is used to represent the fact that
an agent (or a group) is competent for performing a primitive action.

For instance, competent({a}, paint(door), s) expresses that agent a is com-
petent to paint the door in situation s.

— a particular ternary fluent is able_t and is used to represent the fact that an
agent (or a group) is theoretically able to perform an action.
able_t({a}, paint(door), Sy) expresses that agent « is, in situation Sp, theo-
retically able to paint the door.

— a particular ternary fluent is able and is used to represent the fact that an
agent (or a group) is able to perform an action.
able({a}, paint(door), Sp) expresses that agent a is, in situation Sy, able to
paint the door.

3.3 The axioms

Description of the initial situation First, the initial state of the world must
be represented. For doing so, for any fluent f and for any tuples t1,...,t, of
ground terms such that f(¢1,...,%,) is true in the initial situation, we consider
the following axiom:

F1, .o tn, So) (1)

In particular, since competent is a fluent, for any group G competent for
performing the primitive action « in the initial situation Sy, we consider the
following axiom:

competent(G, o, Sp) (2)

Primitive actions For any primitive action «, we consider an axiom of the
following form:

primitive(c) (3)
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Precondition axioms for primitive actions We represent the preconditions
of the primitive actions (i.e., the conditions that make the performance of the
action possible) by an axiom of the following type:

VaVS Poss(a, S) < pre(a, S) 4)

Precondition axioms for sequence We then extend this kind of axioms for a
sequence «; 3 where « is a primitive action and § is a complex action as follows:

VSYGYaV3 Poss(a,S) A Poss(8,do(G,«, S)) « Poss(a; 3,5) (5)

Axiom (5) expresses that a; 8 is possible in S iff « is possible in S and 3 is
possible after the performance of « in S.

Successor state axioms Following Reiter [16], for any fluent f(t1,...,t,), we
consider a successor state axiom which specifies all the ways the value of the
fluent may change.

VSVGVYa Poss(a,S) — f(t1,...,tn,do(G,a, S)) < (6)
V(b sty @, S)V (ft, oy tn, S) A =7 (trs s Ty @, S))

'y}" (t1,...,tn,,S) represents the conditions which make f true after « has
been performed in S. ’yf_(tl, ..oy tn,, S) represents the conditions which make
f false after a has been performed in S.

Since competent is a fluent, we have to express a successor state axiom for it.
In this paper, we assume that the competence is not deleted, i.e once an agent
is competent to perform an action. This is expressed by:

YaVBYGVYS Poss(f,S) — (competent(G, a, do(G, 3, 5)) < competent(G, «, S))

(7)

One can wonder why we have chosen to use a fluent to represent competence

if we assume that competence does not change during execution of action. Let

us claim that our modelling allows to relax this assumption easily by modifying
axiom (7).

Theoretical ability axioms For any primitive action «, we consider an axiom
of the following form:

VYGVS competent(G, a, S) A conditions_t(G,a, S) — ablet(G,a,S) (8)

It expresses that a group G is theoretically able to perform « in situation

S if G is competent for o in S and if some conditions related to G and « are
satisfied.
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Finally, in order to derive the theoretical ability for a group of agents, we
consider:

VGYG'YaVS primitive(a) A (G’ C G) A ablet(G',a, S) — able t(G,,S) (9)

VGG aBS (G'C G)hablet(G', a, S)Aablet(G, 8,do(G', o, S)) — ablet(G, a; 3, 9)
(10)
Axiom (9) expresses the fact that if a sub group G’ of G is theoretically able
to perform a primitive action «, then the group G is also theoretically able to
perform a. Axiom (10) expresses that if a sub-group G’ of G is theoretically able
to perform a and if G is theoretically able to perform 8 once G’ has performed
a, then G is theoretically able to perform «; 5 (i.e., to perform a then 3).

Ability axioms Finally, the following axiom allows to derive the ability of a
group:

YGVaVvS ablet(G,a, S) A Poss(a, S) — able(G, a, S) (11)

4 Some properties of this model

Proposition 1. Let ¥ = {(1),...,(11)} be the set of axioms presented previ-
ously. Then :

X EYaVBVGYG'YS able(G, o, S)Aable(G', 3,do(G, a, S)) — able(GUG’, a; 3, S)

This proposition is proved by an inductive proof on the length of the sequence
a; 3.

This proposition means that if the group G is able to perform « in the
situation s and if the group G’ is able to perform 3 after G has performed « in
S, then the group G U G’ is able to perform «; 3 in S.

A corollary is the following:

Proposition 2. Let ¥ = {(1),...,(11)} be the set of axioms presented previ-
ously. Then :

Y FVYaVBYGYS able(G, a, S) A able(G, B,do(G, a, S)) — able(G, a; 3, S)
Proposition 3. Let ¥ = {(1),...,(11)} be the set of axioms presented previ-
ously, f be a fluent and a a primitive action.

Y F VGYS Poss(a,S) — f(...,do(G,a,S)) = X F VSVG" f(...,5) —
able(G', o, S).
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This proposition is proved by finding a counter example.

This result guaranties that we do not validate the paradox mentioned in
introduction: “if ¢ is true, then the agent has the ability to see to it that ¢”.
Reformulated in our model, this come to say that we do not validate: if « is an
action so that a postcondition is that f is true (i.e, after any performance of «
by a group of agents G, f is true) and if f is true in a situation S, then any
group of agents G’ is able to perform a.

5 Example

5.1 Description of the example

Let a, b and ¢ be three agents.

Primitive actions we consider are: to lift the door (lift), to sand the door
(sand), to paint the door (paint).

— Competence of agents are: a is competent for sanding the door and for paint-
ing it. b is only competent for painting the door. a and b together are com-
petent for lifting the door. ¢ is not competent for any action.

The initial situation is such that there is a sander (sander(Sp)) and it works,
there is some paint and the agents are not tired (for each agent a, ok(a, Sp)
holds).

— Sanding is possible if the sander works.

Painting is possible if there is some paint (paint,).

An agent is theoretically able to sand the door if it is competent for doing
so and if it is not tired ; an agent is theoretically able to paint the door is
it is competent for doing so and if it is not tired ; two agents are together
theoretically able to lift the door is they are together competent for doing
so and if they are not tired.

— Successive state axioms are defined as follows:

An agent is tired iff it has sanded the door, or it has participated in lifting
the door.

There is paint left after the execution of an action, except if it is a painting
action.

No action makes the sander out.

5.2 Formulas in the Situation Calculus
Description of the initial situation (axioms (1) and (2))

ok(a, So)
ok(b, Sp)
ok(c, Sp)
paint_r(Sy)
sander(Sp)
competent({a,b},lift,So)
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competent({b,a},lift,So)
competent(a, sand, Sp)
competent(a, paint, So)
competent(b, paint, So)
Primitive actions (axioms (3))
primitive(lift)

primitive(sand)
primitive(paint)

Preconditions axioms for primitive actions (axioms (4))

VS Poss(lift,S)

VS sander(S) < Poss(sand, S)

VS paint_r(S) < Poss(paint,S)

Successive state axioms (axioms (6))

VBYYVYS Poss(Y,S) — (sander(do(B,Y, S)) < sander(S))

VAVXVS Poss(X,S) — (paint_r(do(A, X, S)) < paint_r(S) A —(X = paint))

VAYBYXVYS poss(X,S) — (ok(A,do(B,X,S)) <
((0k(A,S) A (B = A) A=(X = sand))V
(ok(A,S) N (A € B) A—(X =1ift))Vv
(ok(A,S) AN=(A € B))))

Theoretical ability axioms (axioms (8))

VAVBYS competent(A, B,lift, S)Nok(A, S)Nok(B,S) — ablet({A, B},lift,S)

VAYS competent(A, sand, S) A ok(A,S) — ablet(A, sand, S)

VAVYS competent(A, paint,S) A ok(A, S) — ablet(A, paint, S)
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5.3 Some conclusions

Let us denote X the set of axioms (1),...,(11). Then,

— X — able_t(a, paint, Sp)
In the initial situation, a is theoretically able to paint the door because it is
competent for doing it and it is not tired.

— X — able_t(a, paint, do(a, paint, Sp))
Since painting does not make the agent tired, a is still theoretically able to
paint after he has painted.

— /' ¥ — able(a, paint, do(a, paint, Sy))
But, after a has painted the door, there is no more paint, so it cannot be
proved that a is able to paint the door again (even if it is theoretically able
as it is shown previously)

— I/ ¥ — able_t(a, sand; paint, Sp)
Indeed, after having sanded the door, a will be tired, so he will not be
theoretically able to paint the door.

— /¥ — able_t(a, paint, do({a, b}, lift,Ss))
After the group a,b has lifted the door, a and b are tired. Thus, a is not
theoretically able to paint the door.

— F X — able({a, b}, paint; li ft, Sp)
The group a, b is able to paint then lift the door. Indeed once a or b will have
painted the door, a and b will not be tired. So they will be able to lift the
door.

— /X — able({a, b}, lift; paint, Sp)
The group a, b is not able to lift then to paint the door. Indeed once a and
b will have lifted the door, a and b will both be tired. So none of them will
be able to paint the door.

— Let us add now that agent c is competent for painting the door:
Let X' the set obtained by adding the formula competent(c, paint, Sp) to X.
Thus - X' — able({a, b, ¢}, lift; paint, Sp)
The group a, b, ¢ is now able to lift then to paint the door. Indeed, if agents
a and b lift the door, then this does not make c tired. So ¢ is able to paint
the door after a and b have lifted the door.

6 Implementation

This model has been implemented in Prolog. As in [13], we use a binary predicate
holds in order to represent fluents. For instance, ok(a, Sp) is represented by
holds(ok([a]), S0). The successor state axiom for fluent ok is expressed by
the following clause:

holds(ok(A), do(B,X,S)) :-
B=A, \+ (X=sand), holds(ok(A),S), Poss(X,S);
member (A,B), \+ (X=1ift), holds(ok(A),S), Poss(X,S);
\+ member (A,B), holds(ok(A),S), Poss(X,S).
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We can show that, given a group of agents G and an action « primitive
or not, we have X F ablet(G,a,Sy) (resp. X F able(G,a, Sp)) if and only
if Prolog with negation as failure proves holds(able_t(G,alpha),S0) (resp.
holds(able(G,alpha),S0)). For instance, resuming the example presented in
section 5.3 using negation as failure, we can now show that the answer to the
question holds(able([a,b], [paint,lift], S0)) is yes and the answer to
holds(able([a,b], [1ift,paint], SO) is no>.

7 Discussion

In this paper, we have presented an attempt to model in the Situation Calculus
the notions of theoretical ability and ability of an agent towards an action in
a multi-agent context. Definitions of these two notions to groups of agents has
also been given.

In this model, agents’ theoretical ability depends on their competence and
on some conditions depending on the agents. Agents’ ability is then defined from
theoretical ability and from some conditions which do not depend on the agents.

Introducing the notion of theoretical ability is of course interesting from a
modelling point of view since it makes a distinction between conditions which are
related to the agents who perform the actions and conditions which are not. But
it may also be interesting in the preliminary phase of planning when choosing
the agents who will be in charge of the task to be performed. Indeed, proving
that the chosen agents are not even theoretically able to perform the global task
is enough to prove that the task will never be performed by these agents and
that changing agents is required.

However, if one is only interested in proving that a group of agents is able
to perform an action, the intermediary notion of theoretical ability is not useful
and definitions have to be compacted as follows:

VGYS competent(G, a, S) A conditions t(G, «, S) A Poss(a, S) — able(G, a, S)

This preliminary work has many perspectives.

First, some more formal properties on this model must be proved. In partic-
ular, formal relations with existing works mentioned in the introduction have to
be established.

Secondly, another assumption could be made when inferring the ability of a
group from the abilities of its agents. Indeed, the model presented here assumes
that a group of agents is able to perform an action if one of its member is able to
do so. But this assumes that the conditions for an agent to be theoretically able
to perform an action do not depend on the fact that this agent belongs or not to
a group. But it could happen that a single agent is theoretically able to perform
an action but when it belongs to a group, it is no longer able (not because the
others agents prevent him to do so but because belonging to a group changes
the conditions sufficient for him to be theoretically able to perform the action).

3 Notice that we implement sequence of actions as lists in Prolog.
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Thirdly, we have to extend this work by considering more types of complex
actions like concurrence, iteration or conditionals. We must also take into account
time and action durations. For doing so, the solution provided in [6] can be
adopted.

Finally, the model presented here does not take external actions into account.
In particular, fluents are changed only by actions performed by the agents we
consider. But in many applications, the world may change because some other
agents we don’t know change it. A immediate solution we could study, consists
in introducing an “external agent” who could be used to model the evolution of
the world which are independent from the other agents.
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But never put a person to death on the testimony of only one
witness. There must always be at least two or three witnesses.
Deuteronomy 17:6 (New Living Translation)

Abstract. We present a framework for reasoning about trustworthiness,
with application to conflict resolution and belief formation at various de-
grees of reliability. On the basis of an assignment of relative trustworthi-
ness to sets of information sources, a lattice of degrees of trustworthiness
is constructed; from this, a priority structure is derived and applied to
the problem of forming the right opinion in the presence of possibly con-
flicting information. Consolidated with an unquestioned knowledge base,
this provides an unambiguous account of what an agent should believe,
conditionally on which information sources are trusted. Applications in
multi-agent doxastic logic are sketched.

1 Introduction

To trust an information source, in the simplest, unconditional form, is to believe
every piece of information that the source provides. While providing a paradigm,
this notion of trust has limited application to realistic scenarios. In general, the
trust we have in our information sources, which may vary in kind from teachers
to newspapers to legal witnesses, is not unconditional: we believe what we are
told by a trusted source only as long as we don’t possess knowledge to the
contrary. This simple observation motivates the approach to trust that we will
be discussing in this paper. Conditional trust in an information source is a default
attitude: To believe what you are told, unless you know better.

When looking for information, we often need to consider several sources.
Sources may vary widely with regard to their reliability, and a cautious default
approach then informs us to let the more trustworthy ones take priority over
those that are less trustworthy. Furthermore, we often need to consider more
than one source at a time. Notions of agreement or corroboration, as well as the
consolidation of information drawn from different sources, are essential.

What we present here is a framework for reasoning about relative trustwor-
thiness, with sets of information sources as the basic trusted units. The main part
of the paper is structured as follows. Section 2 addresses properties of the trust
relation itself, making only informal reference to notions of information. Building
on a simple trustworthiness relation (2.1), rational trust attitudes are identified



and ordered according to strength (2.2, 2.3), and ordered in a tree structure of
“fallbacks” (2.4). Section 3 employs this structure to provide an account of trust
in terms of default conditionals. Notions of information, as provided by individ-
ual sources as well as collections of sources, are defined in 3.1. The prioritized
default logic A+ is briefly presented in section 3.2. The defaults approach is
then made explicit in section 3.3, which presents a method for expressing trust
attitudes as formulae of A.

For the presentation of the core theory, we assume that the information
provided by sources is expressed in propositional logic. However, the theory
is equally applicable if one wants to use a more, or less, complex language.
Looking forward, section 3.4 outlines how the analysis can be applied to multi-
agent doxastic logic, to enable the representation of doxastic agents with varying
degrees of trust that the beliefs of other agents are true.

The expression of trusting attitudes in terms of prioritized defaults provides
an answer to the following non-trivial question: Given that we possess a body of
antecedent knowledge, and are provided with information from a set of variously
trusted sources, what is it reasonable to believe?

This work builds on two main sources. For the theory of trustworthiness, the
most important is the work of John Cantwell [1, 2], in which the basic relation
of trustworthiness is defined in a way that is close to the one given here. For the
aspects that relate to default inference and belief, the prioritized belief logic A&
[9, 10, 12], which is closely related to that of [7], has been the primary source of
reference.

We consider the following to be guiding principles for what follows.

Given a collection of sources, what all sources agree on is at least as

1
trustworthy as what only some agree on. 1)
If some unit z is trusted, and y is at least as trustworthy as z, then
. . (2)
rationality demands that y should be trusted too.
Accept information from a trusted unit as true, unless it is inconsistent 3)

with what you have already accepted.

2 A trustworthiness relation

2.1 The basic pre-order on information sources

Let G be a (possibly empty) finite set of sources. The trustworthiness relation
< is a relation between subsets of &; we will often refer to these as source
units. A source unit is an entity that is capable of providing information, as
follows: A singleton unit {a} provides exactly what the single source a does.
A non-singleton unit provides only what follows from the contribution of every
member. Informally, think of a non-singleton source unit as making a “common
statement”, i.e., the strongest that its members all agree on.

Notation: Small Latin letters a,b,c denote sources, small variable letters
x,y,z range over source units, capital Latin letters A, B, C denote particular
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sets of source units, and capital variable letters X, Y, Z range over arbitrary sets
of source units. We will sometimes have to collect sets of source units, for which
we shall use capital Greek letters I', A.

We assume that the trustworthiness relation is reflexive and transitive (a
pre-order). Two source units x and y may be trustworthiness-equivalent, written
T ~y.

x~y =g ryandyJzx (4)
We write z <y to express that y is strictly more trustworthy than z.
<1y =gt = yandnotx~y (5)

Source units that are unrelated by < will be called independent, denoted x 1 y.
Intuitively, we interpret independence as a consequence of lack of knowledge;
neither of x >y, x <y, and x ~ y is known to obtain. If no two source units are
independent, we say < is connected.

We assume that every source, however it is combined with other sources,
makes a non-negative contribution of information. Together with (1), this implies
that enlargement of a source unit with new members may never yield a unit
that provides a stronger set of information. Hence, a unit will be at least as
trustworthy as every unit that it contains as a subset. This motivates taking the
following principle, which we will occasionally refer to as monotonicity, to be
valid.

r<dxUy. (6)
It follows that for each source unit z, the following hold.

r46, (7)
Dz, (8)

To see why (7) is valid, note that & only provides information which is com-
mon to, is agreed upon, by all the sources. At the other extreme, we stipulate
that the empty set is a limit case that always provides inconsistent information,
motivating (8).

In referring to particular source units in examples we will consistently simplify
notation by omitting brackets: a <be is, e.g., shorthand for {a} <1{b, c}. Likewise,
the set {{a},{a,b}} will be denoted a,ab. Observe that the symbol a should,
depending on the context, either be taken as a reference to the source a or to
the singleton source set {a} or to the singleton source set collection {{a}}.

2.2 The poset of trust-equivalent source units

To have an attitude of trust, given some &, is to trust a (possibly empty) set
of source units. In the following, we will allow ourselves to talk about attitudes
as being the sets of source units themselves, and to say that a source unit is
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“included” in an attitude of trust, meaning that that source unit is among those
trusted. The empty set represents the attitude of placing trust in none of the
sources.

Given a trust relation <1, we can distinguish those trust attitudes that respect
the relation. The relevant principle is expressed in rule (2), that = may only be
trusted if every y B> x is trusted as well. We will in this section identify the
permissible trust attitudes according to this principle.

We will use the following standard terminology. In a poset (S, <) the <-
relation is reflexive, transitive and anti-symmetric. The poset has a unique cover
relation <, defined as z <y iff < y and = < z < y implies z = z. C C S is
an antichain if every two distinct elements in C' are incomparable by <. Note
in particular that () is an antichain. Every subset of S has <-minimal elements,
and the set of these elements is an antichain. T C' denotes an up-set, defined as
{z| 3y € C)(y < z)}. The set of antichains in a poset is isomorphic to the set
of up-sets under set inclusion.

If an attitude of trust includes a source set x, but not an equivalently trust-
worthy source set y, then the attitude is not permissible. This motivates a focus
on the equivalence classes of & modulo ~. Where x C &,

[z]  =aet {y:z~y} 9)

Let S be the set of all equivalence classes of G modulo ~. We will say a set of
sources x is vacuous with regard to trustworthiness if z € [§]. In the extreme
case that every set of sources is a member of [(}], the trustworthiness relation
itself is said to be vacuous.

Where X and Y are in &, define a relation <1 of relative strength between
them as follows.

XAY =4 @Az eX)FyeY)lz<y) (10)

Let X <Y designate X QY or X =Y and let X Y designate independence.

Lemma 1. (&, &) is a poset in which [0] is the unique minimum and [&] the
unique mazimum. (6, <) is a linear order iff (p &, <) is connected.

Proof. Monotonicity entails the unique minimum and maximum. The other
properties follow easily from the construction of (&, <).

Example 1. Assume that the set of sources & contains just a and b, and that
a<iab, b<tab, P<1a, and P<1b (i.e., the source units a, b, and ab are non-vacuous,
and ab is more trustworthy than both a and b). The following figure shows Hasse
diagrams of the poset (&, <), given 1. a <1 b, 2. a ~ b, and 3. a1 b.

1. ab 2. ab 3. ab
\ VRN
a a,b a b
\ | NS
? 0 0
0
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Relation 1. requires information provided by a to take precedence over informa-
tion provided by b. Relation 2. emerges from taking a to precisely as reliable as
b: it is only rational to accept a’s contribution given that b’s is accepted as well
(in the event that a and b contradict each other, it is ruled out that either can be
trusted separately). Relation 3. reflects a situation in which less is known about
the relative trustworthiness of a and b than in 1. and 2, i.e., neither is known to
be better or equivalent to the other. With this relation, trusting b but not a is
not irrational; so the range of admissible attitudes is wider. In particular, where
the information a provides is incompatible with what b provides, the relation
doesn’t rule out making a choice of trusting just one of the two.! Compared to
1. and 2., this relation offers more freedom, but less guidance.

The following example, which is developed further in later sections, applies
the theory to a reasonably realistic scenario.

Ezxample 2 (Traffic accident). A traffic accident has occurred. We have been
assigned the task of finding witnesses, assessing their relative trustworthiness,
gathering their statements on what came to pass, weighing the evidence accord-
ing to trustworthiness and finally presenting an account of the accident according
to a reasonable standard (threshold) of trust.

Assume, for this example, that the criterion ac- a
cording to which sources are deemed trustworthy

or not is their viewpoint relative to the incident, ®
and that we are provided with a drawing (right),
illustrating the accident ® and the positions of c b

the witnesses. At the outset, we know that there

are three witnesses, a, b, and ¢, but nothing about their respective trustworthi-
ness. Making no prior assumptions, we start out with the weakest possible trust
relation (0. below).

0. abc 1. abe 2. abc 3. abc
VRN 7|\ /7 N\ |
ab ac be ab ac be ab be ab
I X X N/ \ \
a b C C ac ac
NS /N AN \
) a b c be
N/ 7\ \
1} a c

N S /7 N\

0 a b

N S

0

By applying information provided by the drawing, we are able to considerably
strengthen the trust relation. We will consider a sequence of three steps.

! When the case arises that a and b contradict each other, a choice will implicitly
favour a revision of the trust relation to be like 1. or 2. If the subject opts to trust
a over b, 1. is favored; if neither, this favors 2.
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1. Seeing that ¢ was closer to where the accident took place than the others,
we take ¢ to be more trustworthy than both: a <c and b < c.

2. Because a and b are farther apart than a and ¢, their viewpoints are likely to
be more divergent. Whatever can be observed from widely different perspectives
is likely to hold true. Therefore, we will assume ac <1 ab.

3. Because b and c are close together, we add bc < ac as well.

We choose to make no further additions to the relation. In particular, we
refrain from making a judgment whether a is more trustworthy than b, or vice
versa, or just as trustworthy as b: we consider a and b to be independent. This
means it will be consistent with the trust relation to make a choice between
which of a and b to trust. If they should happen to contradict each other, our
lack of knowledge as to which is more trustworthy then presents us with the
option to trust just one of the two.

Note that ¢ is more trustworthy than b in 2. and 3., but that the relationship
is not preserved when combined with a (ac < ab holds). Indeed, the following
substitution principles are not valid; given z[y/z] = (2 \ ) Uy,

If z<yand z C z, then z < z[y/x]
If x ~yand z C z, then z ~ z[y/x].

2.3 A lattice of trust levels

We know from Lemma 1 that (6, <1) is a poset. Given the poset it is straightfor-
ward to identify the permissible trust attitudes: a trust attitude is permissible if
it is an up-set in (&, <). Technically, we will represent an attitude by its set of
minima, or equivalently, by an antichain in the partial order (&, <). We define
the set ¥ of permissible trust attitudes as follows,

T = {UI'| I' is an antichain in (&, 9)}

We will use the symbol A to denote the attitude that no source unit is trusted,
uo.

There is a natural relation of strength between permissible trust attitudes.
Having a weak trust attitude means trusting only what many sources agree on,
or perhaps none; a strong attitude means trusting many sources, or perhaps all.
Let I' and A be antichains in (6, < ). Then we define

Ul < UA iff 1A C1T.

By definition, A is <-maximal in €. This is natural, as the corresponding atti-
tude of trusting no source unit will always have a maximal degree of reliability.
Ordered by <, the members of ¥ form a lattice in which lesser nodes represent
stronger trust attitudes. It is natural to talk about the permissible trust attitudes
as corresponding to a hierarchy of degrees of trust. We shall hence occasionally
refer to T as the set of trust levels.

In the lattice (¥,<) A < B intuitively means that B is a level of trustwor-
thiness that is genuinely greater than A. Let M denote meet and U denote join.
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Then AU B is the weakest trust level that is at least as strong as both A and B;
if A and B are not comparable by <, then it is stronger. AT B is the strongest
trust level that is at least as weak as both A and B.

Ezample 8 (Lattices for example 2).

0. A 1. A 2. A 3. A
\ | \ |
abc abc abc abc
PN P N VRN \
ab ac be ab ac be ab be ab
> > > |~ |
ab,ac ab,bc ac,bc ab,ac ab,bc ac,bc  ac ab, be ac
SN XN ~N N |
a ab,ac,bc " p ¢ ab, ac, be ac, be be
N xS | | |
a,bc  ac,b ab,c c c c
> > /N /N AN
a,b a,c b,c a b a b a b
~N |7 NS NS NS
a,b, c a,b a,b a,b
\ \ \ \
0 0 0 0

The lattice of trust levels makes explicit what the permissible trust attitudes
are and how they are related with regard to strength. This can form the basis
for choosing, in a given scenario, a threshold of trust: a level that is deemed
sufficiently trustworthy. Setting a threshold may also be described in terms of
risk. If A < B, then to choose A as the threshold of trust is to take a greater risk
with regard to trusting sources than if B is chosen. Determining a threshold of
trustworthiness amounts to fixing a “limit” of risk, to draw a line between what
is trusted, and not trusted, in the non-relative sense of the word. For example,
with a threshold at AU B, if A and B are comparable, risk is limited to what
follows from trusting the more trustworthy of the two; if incomparable, then
to the greatest degree of risk that represents comparably less risk than both A
and B. To say that AM B lies within the risk limit means that A and B are
both considered reliable (i.e., that all source units in A and B provide only true
information).

A threshold of trust can be conveniently specified by reference to the source
units trusted. Observe that each member of & is a member of T. Therefore, any
expression using members of S (i.e., equivalence classes of source units), M and
LI denotes a unique level of trust.

Ezample 4 (Threshold for ezample 3). Say that we adopt the attitude to “trust
all that ab and ac deliver, as long as it is confirmed by bc¢” as a threshold. This
attitude is expressible as ([ab] M[ac]) U[bc]. Given relations 0., 1., and 2., the atti-
tude amounts to trusting only what a, b, and ¢ agree on, because (abMac)Ubec =
(ab, ac) Ubc = abc. With the stronger relation 3., it denotes the level ab.
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2.4 A tree of fallbacks for broken trust

The core of a default conception of relative trust in information sources is the
default rule (3) to accept what you are told, unless it is in conflict with what
you already know We presently interpret this rule with respect to relative trust.
Let us consider a trusting subject that has only permissible trust attitudes. In
the non-relative sense of “trust”, A is always trusted, and a level X is trusted,
on condition that every Y > X is also trusted, by default.

Now, if trusting at a level X is inconsistent with trusting at a superior level Y,
trust at X is broken; X is not trustable. This will obtain whenever information
provided at X is inconsistent with antecedent knowledge, or with information
accepted at a superior level. The significance of of trusting at X should then be
identified with trusting some superior, trustable level; call this the fallback of X.
The fallback, as the value of a blocked default, is the key notion that allows us
to view relative trust as a default attitude.

Let X be an element of ¥ different from A, and let I" be the <-cover of X.
Given that I" is singleton, we straightforwardly identify | JI" as the appropriate
fallback of X. Where not, note that by construction of the lattice, X is a level
composed of a set of simpler levels, the members of I'. That trust is broken
at X means some of these levels are not trustable. In this case, the fallback
of X should be identified as a level with greater trustworthiness than every Y
immediately superior to X. Let the fallback f(X) of X be defined as

f(X) = lub(I) in (%,<).

The fallback function is undefined for A; otherwise every node has a unique
fallback. A, representing the trust level of antecedent knowledge, is always the
fallback of [S]. Note that every path from the lattice maximum A to a trust
level X must go through f(X), and that f(X) is the <-minimal node with this
property.

The fallback tree (%,<) is defined as the weakest relation such that for all
X €%, f(X) < X. It is easy to show that the fallback tree is indeed a tree with
root A.

Ezample 5 (Fallback trees for example 3).

1. A 2. A 3. A
| \ |
abc abc abc
IR VRN |
ab /ac be ab be ab
| |
ab, ac ab,bc ac,bc ac ab, be ac
|
ab, ac, be ac, be be
\ \ |
c c c
ALRN VAN VAN
a a,b b a ab b a ab b
\ \ \
0 0 0



3 Trust in terms of defaults

The aim of this section is to implement the default approach to the information
trust model based on a function I which assigns propositional content to each
source in 6. The default interpretation of fallback trees is then encoded into the
logic . Encoding fallback trees in A1 will allow us to give precise answers to
questions such as, “which trustworthiness levels support a belief in a proposition
@7, and “is ¢ entailed by the beliefs of a given degree of trustworthiness?”. A+
is a natural choice as representation language for default inferences. It allows
a simple representation of ordered supernormal defaults theories as well as a
natural extension to multi-agent languages.

The basic assignment of information to sources is a mapping from members of
G to expressions in a formal language. In section 3.1 we use the simple language
of propositional logic to this end. However, there is no intrinsic reason for using
this language to represent information, and one can easily conceive of using more
complex languages for this purpose. Section 3.4 explores possibilities for using
multi-agent langauges.

3.1 Information provided by sources

Basically the information interpretation of the trust model assigns formal ex-
pressions to each source in &. The assignment function I must then be extended
to source units (sets of sources) and trust attitudes (sets of source units). To
implement this we identify the corresponding operations of agreement and con-
solidation of information content. In propositional logic these operations will be
implemented simply by means of disjunctions and conjunctions.

Let us denote the informational content of a source a in & by I, which is a for-
mula of propositional logic. Intuitively, the information I, provided by a source
unit is defined to be the strongest proposition that every member of the unit sup-
ports — the strongest that the members all agree on. If x = {a4,...,a,}, a; € &,
then I, =1,, V--- VI, . The value of Iy, on the common understanding of 0-ary
disjunctions, will be assumed to be the propositional falsity constant 1. The
empty set hence gives a contribution which is always unacceptable.

Define the consolidated informational contribution of x1,...,2, C S asly =
I, A---Al, . That is, we define the informational contribution of a set of source
units as the strongest consequence that would follow from taking each unit as a
source of evidence. Observe in particular that Ijg will always be L. By convention
I,is T.

3.2 Intermezzo: The Logic A

E+ is an “Only knowing” logic, generalizing the pioneering system of Levesque [7]
with language constructs for the representation of various degrees of confidence
for a doxastic subject.

The object language of At extends the language of propositional logic by
the addition of modal operators: O (necessity) and modalities By (belief) and
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Ci (co-belief) for each k in a finite index set I. The index set represents the
distinct degrees of confidence and comes along with a partial order which gives
the indices relative strength. by ¢ is defined as = By —¢ and denotes that ¢ is
compatible with belief at degree of confidence k.

A formula ¢ is completely modalized if every occurrence of a propositional
letter occurs within the scope of a modal operator and purely Boolean if it
contains no occurrences of modal operators. The “all I know at k” expression
Oy ¢ abbreviates By, ¢ A Ci, =, meaning that precisely ¢ is believed with degree
of confidence k. A formula of the form A, _; Oy ¢ is called an O;-block. If each
@k is purely Boolean, the O;-block is said to be prime.

Kt is a special instance of the system A, introduced in [8] and further
analyzed and motivated in [12]; the references contain in particular an axiomati-
zation, a formal semantics and proofs of soundness, completeness and the finite
model property. A particularly strong property of A+ is the Modal Reduction
Theorem: for each O;-block ! and for some m > 0, there are prime O;-blocks
Yl . ¢l such that - ol = (f v .- v pl).2

A prime Oj-block determines the belief state of the agent in a unique and
transparent way; if such a formula is satisfiable, it has essentially only one model.
A non-prime Oj-block only implicitly defines the belief state and has in general
a number of different models. The Modal Reduction Theorem relates an implicit
belief representation to an explicit representation by a provable equivalence. To
determine whether m > 0 in the statement of the theorem is X%-hard.

If there is only one degree of confidence, A+ is equivalent to Levesque’s
system of only knowing, for which there is a direct correspondence between a
stable expansion in autoepistemic logic and a prime formula O ¢. A prime O;-
block is a natural generalization of the notion of stable expansion to a hierarchical
collection of expansions.

3.3 Encoding the fallback tree as defaults in A+

We now describe how to use a fallback tree to extract information, both between
contributions of the sources, which may be more or less mutually compatible,
and between these contributions and a set of antecedently given information.

To facilitate the discussion let us say that a fallback tree is information
labelled if each node X in the tree is labelled with Ix. The labels express the
information contribution attached to the trust level X.

We will assume that a knowledge base, denoted &, is given with unconditional
trustworthiness. Informally, say that (precisely) , a formula of propositional
logic, is believed with full conviction. The notion of trustworthiness is directly
relevant to the notions of confidence and belief, as is clear by the simple obser-
vation that information stemming from highly trustworthy sets of sources will
be considered reliable with a greater degree of confidence than that which is

2 In the sequel - denotes the provability relation of A+ (which extends the provability
relation of classical logic).
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provided by less trustworthy sources. Following the default interpretation for-
mulated in principle (3), we can define a simple procedure which reveals what
information may reliably be said to be supported at each level of trustworthiness.
Define the following formula by induction over the fallback tree.

Br= kK

By = Byxy Nx  if Bjxy Alx is PL-consistent,
X Bi(x) otherwise.

Then [Bx denotes what a rational agent should believe at a degree of confidence
corresponding to the trust attitude X.

The modal logic A+ is suitable for the representation of fallback trees and
the associated default principle. In the encoding we use the set of trust levels ¥
as the index set which individuates modalities in the language of Er. Let (%, <)
be the fallback tree and <* be the reflexive, transitive closure of <. For X € ¥
we define

O0x =bxIx DIx.
Note that dx is equivalent to = 1x D Bx —1Ix, i.e., should ¢ be false, the subject
will believe that it is. We will refer formulae of this form as default conditionals
when they occur within a modal O-context, since the conditional then has the
force of formalizing the property corresponding to the statement “the proposition
Ix holds by default”.

The default interpretation of the default structure is formalized by the fol-
lowing encoding;:

[[(Z,<,Ii]])\ = O)\Iﬁ}
[T.<.6lx = Ox (A A\ 0y)
[T, <, 61 = A\

[[rz7 '<: K/]]X
The encoding is structurally similar to the encoding of ordered default theories
into A7 in [4].

Xe%

Theorem 1. - [T, <, k] = A ycz Ox Bx.

Proof. The proof uses simple properties from the model theory of A, cf. [12]. In
an A+ model M all points agree on the truth value of every completely modal-
ized formula. We will hence use the notation M | ¢ whenever a completely
modalized ¢ is satisfied at some point in M. We use the following two facts in
the proof. Let M satisfy Ox ¢ for an index X.

1. If M satisfies Ox 9, then ¢ = 1) is true at every point in M.
2. If ¢ and ® are purely Boolean, M satisfies bx ¢ iff ¢ I —).

We show, by induction on X, the more general result that for any Z € ¥

[ /\X<*Z[[T7~<,Ii]]x = /\X<*ZOX ﬂX .
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The base case is trivial. For the induction step, it is sufficient to show that
M = [%,<,k]x = Ox fx for any Er-model satisfying both [T, <, x]sx) and
Os(x) Bj(x)- By 1, every such model M satisfies

ME (kA N\
Thus M = [T, <, k]x = Ox(Bsx) A dx). It only remains to show

M ': Ox(ﬁf(x) N (bXHX D HX)) =0x 0x .

But since M = Oj(x) Bf(x), it follows directly from the definition of 3x and 2
that M |= bx Ix iff Bjx) I/ —1x, and we are done. O

y <0, ) = B -

The theorem shows that the encoding of a node X and its information content
can be reduced to the Oz-block A yc¢ Ox Bx within the logic itself, where at
each node X in the tree the formula [y is the proposition that the rational agent
will entertain at this level of trust.

Ezample 6 (Evample 5, with information). The witnesses a, b, and ¢ are inter-
viewed for their accounts of the accident scenario. We assign content to propo-
sitional variables as follows: p = The green car was veering; ¢ = There was a
cat in the road; r = The red car was veering; s = The red car was speeding.
The following figure records the witnesses’ statements (left), and the resulting
post-evaluation propositions at each trust level decorate the fallback tree (3.).3

a: gA(rVvs) 3. A :pVr
\
abe : (pVr)A(gA(rVs)VpA(=qVrT))
c: pAr |
ab : (pVr)A(gA(rVs)VpA—g)
[
ac :(pVr)A(gAsV(gVp)AT)
\
bc :pAT

b: pA—q

\
c :pAr

7N

pA(rAg): a b :pArA—gq

a,b : L
\
0L

Noteworthy features:

— a and b may not both be fully trusted, but choosing either is consistent.
— The proposition s, which figures as a disjunct in a’s account, is eliminated
from the node bc onwards.

% Formulae computed using The Logics Workbench, http://www.lwb.unibe.ch/.
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— For nodes a,b and ), the value L is displayed to emphasize their inconsis-
tency. These nodes will actually take values from the consistent fallback node
c,ie, pAr.

3.4 From information sources to doxastic agents

There is no intrinsic reason to use the language of propositional logic to represent
the information delivered by sources. This section addresses the use of multi-
modal languages for this purpose. The expressive power of such languages is
needed in cases where the sources deliver information about agents; typically,
about what the agents believe. To generalize the approach of section 3.3 we need
to extend the language of A+ such that it extends the information representation
language.

The logic At has been extended to a multi-modal language. An interesting
proof-theoretical property of this extension of A+ is that it has a sequent cal-
culus formulation which admits constructive cut-elimination and hence cut-free
proofs; this is proved in [11] for a multi-agent language in which the beliefs of
each subject are represented relative to different degrees of confidence. A Kripke
semantics for the logic has been presented in [13].%

Let us assume that the modalites in the multi-agent language is defined by a
collection Iy, ..., I, of index sets, one for each agent. The indices in each index
set are partially ordered, while two indices in different index sets are unrelated.

The notion of an O;-block transfers to the multimodal langage: An Oy,-block
is a formula /\kelj Oy, ¢y If each formula ¢y, is I;-objective, i.e. all occurrences
of a I;-modality occurs within the scope of a modality which belongs to another
agent, the Op;-block is prime. An O-block can now be defined as a conjunction
of Oz;-blocks, one for each agent. Given these concepts the Modal Reduction
Theorem transfers to the multi-modal logic.

Let us first assume that the sources deliver information about the beliefs
of agents a,...,a,, without being agents themselves, i.e. they do not deliver
information about other sources, or about themselves, or about the observer
who collects the information. Assume also that the beliefs of these agents are
represented in the multi-modal system K45,,, i.e. a sublanguage of multi-modal
AT, so that the I function now delivers K45, formulae.

The index sets for the multi-modal Ar-representation are T, {1}, ..., {am}.
The assumption that no «; are sources implies that we can use the same simple
functions for agreement and consolidation as introduced for propositional logic
in section 3.1. It is now straightforward to establish Theorem 1 for the language
at hand.

Ezxample 7 (Modal information). A simple case in which sources provide formu-
lae in a modal language. Let the trustworthiness relation be given as in example
1, relation 3. Let the knowledge base be empty, and assign information to sources

1 The semantics has been given for a multi-agent language without confidence levels.
An extension to the languge addressed in this section is straightforward.
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as below (left). The fallback tree shows the outcome of evaluation (right). Here,
trusting what a and b agree on (source unit ab) implies accepting that agent 1
has a full belief regarding p. Trusting both sources (node a, b) implies accepting
that 1 is inconsistent.

a: Bip A

b: B - |
17P ab :BypVBy—p

SN

Bip: a b :By-p

a,b : By(p A —p)
\
0L

If the information sources are themselves agents, the situation is at once
much more complex, and we propose this to other researchers in the community
as an interesting and challenging application of multi-modal logics. One problem
is that we can no longer implement agreement and consolidation by means of
simple Boolean operations. In some cases we may use the notion of “group belief”
for agreement and “distributed belief” for consolidation (see e.g. [5]).

However, we can also use the full expressive power of multi-modal £+ to
specify very complex formulae delivered by each agent, in which case these op-
erators are no longer sufficient for this purpose. We plan to address this in a
follow-up paper.

4 Related work

The present account of trustworthiness generalizes and clarifies the approach in-
troduced by John Cantwell [1]. Our approach improves on Cantwell’s by making
a clear separation between the notion of trustworthiness on the one hand, and
information and belief on the other, which allows for the notion of trustworthi-
ness level to be separated from a given model. Furthermore, the present theory
gives informative results for various weak kinds of trustworthiness relations that
yield vacuous output on Cantwell’s approach.’

In this paper, no attempt has been made to give a general account of the
basic non-relative notion of trust; for this, see Jones [6]. We intend to apply
the present theory of relative trustworthiness to Jones’ analysis of trust in a
forthcoming paper. We also wish to explore the complex subjects of construction
and revision of trustworthiness relations in the future.

5 Cantwell incorporates his theory of trustworthiness into a theory of belief revision.
This is an application that we have not gone into.
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Abstract. This is a short report about the first contest of Multi-Agent
Systems (MASs) that are based on computational logic. The CLIMA
workshop series (which started in 1999) is a forum to discuss techniques,
based on computational logic, for representing, programming, and rea-
soning about Multi-Agent Systems in a formal way. Now in its it seventh
year, it was felt that organising a competition for evaluating MASs based
on computational logic is appropriate. The authors took on this task,
which turned out to be quite difficult under the given time frame. We
believe that this first competition is a (modest) first step towards (1) col-
lecting important benchmarks, (2) identifying advantages/shortcomings
and, finally, (3) analysing promising techniques of using Computational
Logic in Multi-Agent Systems.

1 Introduction

Multi-Agent Systems are beginning to play an important role in todays software
development: The International Journal of Agent-Oriented Software Engineering
(IDOSE)[1], the International Workshop on Agent-Oriented Software Engineer-
ing (AROSE)[2] and the International Joint Conference on Autonomous Agents
and Multi Agent Systems are just examples for that trend.

The development of MASs requires efficient and effective solutions for differ-
ent problems which can be classified into two classes: the problems related to
(1) the development of individual agents and (2) the development of their inter-
actions. Typical problems related to individual agents are how to specify, design
and implement issues such as autonomy, pro-active/reative behaviour, perception
and update of information, reasoning and deliberation, and planning. Typical
problems related to the interaction of individual agents are how to specify, de-
sign and implement issues such as communication, coordination, cooperation and
negotiation.



This competition is a first attempt to stimulate research in the area of MASs by

1. identifying key problems, and
2. collecting suitable benchmarks

that can serve as milestones for testing new approaches and techniques from com-
putational logic. While there already exist several competitions in various parts
of artificial intelligence (theorem proving, planning, robo-cup, etc) and, lately,
also in specialised areas in agent systems (trading agent competition (TAC)
[3] and agentcities competitions [4]), the emphasis of this contest is on the use
of computational logic in MASs. We believe that approaches and techniques of
computational logic are essential for the development of MASs for at least two
reasons: (1) logical approaches have proven to be very useful for specifying and
modelling MASs in a precise manner, and (2) the specification and models can
be executed.

We expect to promote the development of MASs by first identifying difficult
problems and then finding solutions by comparing different approaches from
computational logic for solving them. While this idea seems very appealing, it is
not an easy task to come up with a particular scenario that serves as a basis for
a contest. Such a scenario should be generic enough to be applicable for a wide
range of techniques of computational logic, but it should also be precise enough
so that different approaches can be tested and compared against each other.

2 Scenario description

This competition is organised as part of CLIMA and consists of developing
MASSs to solve a cooperative task in a dynamically changing environment. The
environment of the MAS is a grid-like world where agents can move from one
slot to a neighbouring slot if there is no agent already in that slot. In this
environment, food can appear in all but one of these slots. The special slot,
in which no food can appear, is considered as a depot where the agents can
bring and collect their food. An agent can observe if there is food in the slot
it is currently visiting. Initially, food can be placed in some randomly selected
slots. During the execution, additional food can appear dynamically in randomly
selected slots except the depot slot. The agents may have/play different roles
(such as explorer or collector), communicate and cooperate in order to find and
collect food in an efficient and effective way.

We have encouraged submissions that specify and design a MASs in terms
of high-level concepts such as goals, beliefs, plans, roles, communication, coordi-
nation, negotiation, and dialogue in order to generate an efficient and effective
solution for the above mentioned application. Moreover, the MAS implementa-
tions should be based on computational logic techniques (e.g., logic program-
ming, formal calculi, etc.) and they should reflect their design in a direct and
intuitive way.

We are completely aware of the fact that this scenario can also be attacked
by completely different methods and approaches (e.g., based on machine learn-
ing, neural nets, etc.). In fact, we believe almost all scenarios can be modelled in
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various languages and programming paradigms. One important aim of this con-
test is to find out where exactly computational logic helps in solving particular
problems and where other approaches are superior.

The challenge of this competition is thus to use computational logic tech-
niques to provide implemented models for the abstract concepts that are used
in the specification and design of MASs. These implemented models should be
integrated to implement the above-mentioned application intuitively, directly,
and effectively.

3 Submission format

A submission consisted of two parts. The first part is a description of analysis,
design and implementation of a MAS for the above application. Existing MASs
methodologies such as Gaia[12], Prometheus[11] and Tropos[9] can be used (not
demanded) to describe the analysis and design of the system. For the description
of the implementation, it should be explained how the design is implemented.
This can be done by explaining, for example, which computational logic tech-
niques are used to implement certain aspects of the MAS (including issues related
to individual agents).

The second part is an (executable) implementation of the application. We
did not demand any particular way (data format, algorithm, mechanism) to
implement the system as long as it is implemented as a MAS and as long as
the environment is a 20x20 grid. Moreover, it should be possible to configure
the initial state of the environment to place food in arbitrary slots. During the
execution food should appear automatically every 20 seconds in a randomly
selected slot. The MAS will be run with 4 agents that are positioned initially at
the corners of the grid. The implementation should be executable on a windows
or linux machine.

3.1 Received Submissions

We have received four submissions for this first edition of the CLIMA contest.
From the received submissions, only one submission did use an existing multi-
agent methodology to develop a running system. Moreover, some submissions
explain explicitly which techniques from computational logic are used to develop
certain aspect of the MAS efficiently and effectively, while the use of computa-
tional logic techniques in other submissions is limited to the use of the Prolog
language for the system implementation.

The submission from Carlos Cares analyses the scenario and designs a MAS
in a systematic manner using Tropos, a well-known MAS methodology. The sce-
nario is analysed in terms of multi-agent concepts and features such as actors,
roles, beliefs, goals, plans, capabilities, commitments and resources. Based on
these concepts, a system is designed in terms of instantiations of these con-
cepts resulting a set of agents. In this submission, the Tropos methodology is
extended with a Prolog implementation phase that allows the implementation
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of the Tropos-based architecture in terms of Prolog data structures such as lists,
predicates, and rules.

The submission from Simon Coffey and Dorian Gaertner does not use an ex-
isting MAS methodology to develop their system. They provide directly a system
architecture consisting of BDI agents that sense the grid environment to update
their beliefs, evaluate their intentions, communicate with other agents, and se-
lect and execute actions. The agents are able to negotiate over their intentions
to improve the efficiency of food collection. They also introduce different roles
that agents can play such as the scouting role: a role for finding food. Based on
different agents roles, they discuss a second system that consists of two types
of agents: the agents that can only play the scouting role and the agents that
can find and collect foods. Although in the proposed system the agents are sta-
tic and can play only one role, they discuss the possibility of agents that can
play different roles and can change their roles dynamically. In this submission,
the designed system is implemented using Qu-Prolog that allows multi-threaded
execution of agents.

The solution of Robert Logie, Jon G. Hall and Kevin G. Waugh consists of
a purely reactive system of agents with no internal representation of the current
state. Their system resembles Brookes subsumption architecture and has the
notion of a role (or policy) at its core. Agents use certain roles and can switch
between them when the environment changes. They use the idea of pheromone
trails in order to find interesting and successful paths (their agents do not have
a memory). Although their system does not seem to use computational logic in
an extensive way, it has been motivated from research on normative reasoning in
deontic logic. An interesting idea is that for more complex systems, this might
lead to agents that develop and create new roles (in addition to those originally
specified).

The final submission, by Eder Mateus Nunes Goncalves and Guilherme Bit-
tencourt, concentrates on the notion of coordination between agents in a MAS.
Each agent maintains a knowledge base and updates it accordingly. The under-
lying notion is a high-level petri net. Agents start cooperating with the agent
closest to the food (once it has been found). The cooperation ends when the
food is delivered at the depot. Messages are FIPA compliant. One of the main
results is the influence of the appearance of new food (and the time it takes to
store food in the depot) to the impact of cooperation between the agents. If the
time interval for new food to appear is small with respect to the time it takes
to store it, than cooperation pays off.

4 Winning Criteria

The criteria used to evaluate submissions and to select the winners are as follows:

1. Original, innovative, and effective application of computational logic tech-
niques in solving specific multi-agent issues identified in this application.

2. The performance of the executable implementation. The performance of the
executable implementation will be measured based on the amount of food
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that is collected by the MAS in a certain period of time. All programs will
be run on the same machine (Windows/Linux double boot machine).

3. The quality of the description of analysis, design and implementation of
the MAS the elegance of its design and implementation, and the ease of
installation and execution of the program.

The winner of this competition will be decided shortly before the CLIMA
workshop and announced during the contest event of the workshop.

5 Conclusion

Given the very tight schedule (from the announcement to the submission dead-
line) we are more than satisfied with the four submissions. While these proceed-
ings are in print, we are installing the systems and run them for several scenarios.
The winner(s) will be announced at CLIMA VI in London.

We believe this contest will promote the use of techniques and approaches
from computational logic to the development and implementation of MASs. Al-
though the contributions for this contest may propose computational logic tech-
niques and approaches that are specific for this particular scenario (application),
they may be generalised and adopted to other MASmethodologies and program-
ming languages. In particular, we believe that this contest will stimulate the use
of computational logic techniques and approaches for research and design of pro-
gramming languages that support the implementation of MASs in an effective
and efficient manner.

There are several existing activities that aim at stimulating research and
design of programming languages for MASs. Example of such activities are the
International Workshop on Programming Multi-Agent System [5], the AgentLink
Technical Forum Groups on Programming Multi-Agent Systems [6], and the var-
ious seminars and books dedicated to Multi-Agent Programming [7, 10, 8]. Our
experience is that many of the existing programming languages for implement-
ing MASs, such as IMPACT, 3APL, CLAIM, Jason, and Jadex [7], are based on
techniques and approaches from computational logic. In these programming lan-
guages, computational logic techniques are used to model various mental atti-
tudes of agents such as beliefs and goals, planning components, and reasoning
components.
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Using Pheromones, Broadcasting and Negotiation
for Agent Gathering Tasks

Simon Coffey and Dorian Gaertner

Imperial College London, SW7 2AZ, United Kingdom

Abstract. We describe an implementation of distributed, multi-threaded
BDI-style [RG95] agents cooperating efficiently in a food-collecting sce-
nario. Using ant-style pheromone trails and a pseudo-random walk procedure
they explore the world uniformly, and negotiate to allocate collection tasks.
Global information is disseminated via a publish/subscribe mechanism. The
system is implemented using the concurrent logic programming language
Qu-Prolog.

1 Problem description

For brevity’s sake, a full description of the problem is omitted here. However, in
addition to the constraints given in the competition specification, we have made
two further assumptions: that the agents can move only in the directions North,
South, East and West (i.e. diagonal moves are excluded), and that each agent can
only carry one item of food at a time.

2 Design

A multi-agent system is typically characterised by the distributed execution of com-
municative agents that are situated in an environment.

We decided to use multi-threaded, logic-based, autonomous pseudo-BDI agents
that are situated in an environment without central control. The environment pro-
cess seeds food into the world, maintains the pheromone trails', sends percepts to
the agents when requested and interfaces with the GUI

2.1 Architecture

We designed our agents using an architecture loosely based on Rao and Georgeff’s
Beliefs-Desires-Intentions (BDI) model [RG95]. Each agent has beliefs about the
state of the world including the location of food and the depot as well as beliefs
about claims other agents have made. When an agent claims a certain piece of
food, he informs the other agents about his intention to pick it up. Delivery of food
and searching are other examples of intentions. Desires in our implementation are
largely implicit, being limited to the built-in aim of each agent to collect and deliver
as much food as possible in the shortest number of moves.

Each agent consists of two primary threads and a dynamic database (figure 2(a)).
The knowledge thread receives percepts from the environment (sensing), updates
the belief store depending on how it perceived the world, re-evaluates the intentions
of the agent and communicates with other agents announcing certain events. The
action selection thread then uses the current beliefs and intentions to decide which
action to execute next. It informs the environment about its choice of action, which
updates the world state and sends new percepts to the agent’s knowledge thread.

1 described in Section 2.8



2.2 Agent Language

Actions, percepts, beliefs and intentions are all sets of Prolog terms:
Action ::= [pickup, putout, move(Direction)]

where Direction is a variable representing north, south, east or west

Percept ::= [depot_same_cell, food_same_cell, has_food, has_moved,
north(N), south(S), east(E), west(W)]

where N, S, E, and W are variables that represent cart, wall or a pheromone level

Belief ::= [at(X,Y), depot_at(X,Y), have_food, intends(Agent,
Intention)]
Intention ::= [collect_food(X,Y), deliver_food]

where X and Y represent coordinates. Note that searching is never explicitly in-
tended by the agent, but used as a default behaviour if no other intentions exist.

2.3 Action Selection

Agents choose their actions using teleo-reactive (TR) programs [Nil94], consisting of
a priority-ordered sequence of condition/action rules. A simplified version of the TR
program used is shown in Figure 1. This approach is particularly useful in scenarios
like ours, in which durative behaviours (e.g. explore) are desired. It is important
to note that at each percept/reaction cycle, the action chosen is only ever a single
atomic one, belonging to the agent’s set of allowed actions (defined above). For
example, while walk_to(X,Y) appears to be a multi-step plan, it is in fact simply
a set of rules which choose the agent’s next atomic action; it must be repeatedly
invoked in order to arrive at (X,Y). Thus, the right-hand side of the rules in figure
1 are all either atomic actions, or programs which return an atomic action.

intends(deliver_food) A believes(agent_at(depot)) — putout
intends(deliver_food) A believes(depot_at(X,Y)) — walk to(X,Y)
intends(deliver_food) — explore
believes(at_food) — pickup
intends(collect_food(X,Y)) — walk to(X,Y)

T — explore

Fig. 1. Simplified action-selection TR program

Note that the action selection program does not manipulate beliefs, alter the
intentions of the agent or handle negotiation in any sense; it operates solely on
the current intentions and beliefs of the agent, returning only an action. All agent
state manipulation is performed by the intentions thread (described in Section 2.4),
which runs in parallel to the action thread, ensuring a consistent set of beliefs and
intentions for the action selection program to use.
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2.4 Intention Selection & Knowledge Maintenance

The intention selection thread takes the form of a message-processing cycle. While
awaiting the next set of percepts from the environment, it listens for broadcast
messages and negotiation requests from other agents, updating its beliefs and in-
tentions accordingly. This is the only place in which modification of the agent’s
believes(...) and intends(...) dynamic predicates is permitted. For exam-
ple, if agent red receives a broadcast message informing him that agent blue is
claiming food at location (5,9), it will add the term believes(intends(blue,
collect_food(5,9))) to its dynamic knowledge base.

When a set of percepts is received, the agent first updates its beliefs about
the world state using the new percepts. Since the set of percepts it can receive
is relatively limited, this is achieved with an explicit set of handling routines for
each type of percept. It then decides whether to send any negotiation requests, and
finally re-evaluates its intentions accordingly. It does so using a series of declarative
conditions, made possible by the backtracking operation of Prolog-style languages.
For example, the delivery cost function for a particular item of food is simply written
with two rules,

cost_of (food(X,Y),Cost) :-
believes(agent_at (AgX,AgY)),
believes(depot_at (DepX,DepY)),
manhattan(AgX,AgY,X,Y,C1),
manhattan(X,Y,DepX,DepY,C2),
Cost is C1 + C2.

cost_of (food(X,Y),Cost) :-
believes(agent_at (AgX,AgY)),
manhattan(AgX,AgY,X,Y,Cost) .

where manhattan(X1,Y1,X2,Y2,D) gives the manhattan distance between two
points. This cost function is then called to find the optimum choice of food at
the start of each turn (assuming there is any known food). If this food is believed
to be claimed by another agent, negotiations are initiated with that agent. If the
negotiation is unsuccessful, the agent will claim the cheapest unclaimed food (or
retain whichever food it had previously claimed). Every new claim is broadcast to
the other agents, enabling them to contact the “owner” of any food they wish to
claim for themselves.

/ RN

‘Action Selection Knowledge
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Intentions.
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Inter-agent comms
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Fig. 2. (a) Negotiation example and (b) architecture design
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2.5 Communication

Communication between agents utilises two of the main communication paradigms:
publish/subscribe, and point-to-point messaging. The former is used for global
knowledge sharing, while the latter is used for efficient negotiation between specific
agents, as well as agent/environment communication. Each agent places a subscrip-
tion for messages about food/depot locations and agent commitments at a remote
server. When one agent finds an item, or claims some known food, it will publish
a notification about this event to the server which in turn will inform all other
agents that have subscribed to this event. This allows for dynamic addition of new
agents to the scenario without having to change the running system. Negotiation is
achieved using asynchronous message-passing. This is more efficient than using the
broadcast system, since negotiation is always bilateral in our implementation; there
is no need for all agents to be party to the negotiation messages.

2.6 Negotiation

In order to most efficiently allocate the collection of known food to each agent, we
allow our agents to negotiate over the targets of their intentions. The agents have
a defined policy only with respect to individual negotiations, namely to minimise
the combined cost of delivery for the two negotiating agents. This is achieved by
examining each agent’s next-best option, and optimising accordingly. The implicit
global effect of this policy is to minimise the total delivery cost of all known deliv-
eries. This is the result of a series of bilateral negotiations; no single agent takes
responsibility for optimising the entire set of deliveries.

Figure 2(b) illustrates an example where negotiation can improve the efficiency
of food collection. It shows a snapshot of the environment state, in which agent Ao
has just delivered some food, agent A; has claimed and intends to pick up food Fj
and some other agent that was already carrying food accidentally discovered and
broadcasted the existence of food Fy. Without negotiation, A; would claim F5 and
collect and deliver it in 30 steps while A; drops off F; in 18 steps.

Note that A; would not volunteer to pick up F» since this would increase his
personal delivery cost to 22 steps. We therefore allow Ay to send a bid to A,
requesting permission to collect F; instead. It sends its cost of collecting F}, plus
the delivery cost of its next-best option (in this case F3). A; will then consider
the request, ceding responsibility for F if the total delivery cost after the swap is
reduced. The re-allocation allows agent A, to pick up and deliver Fj in 10 steps at
the expense of a small increase in the other agent’s delivery cost. In terms of welfare
economics, both the egalitarian and the utilitarian social welfare is improved?.

2.7 Agent Roles

After initial experimentation with all agents performing as described above (i.e.
searching until they first find food, then immediately delivering it), it became obvi-
ous that except in the most food-rich environments, knowledge about food locations
was almost non-existent. The agents thus simply randomly walk until they first find
food, which they immediately pick up and deliver, giving no opportunity for task
optimisation. We therefore implemented a second type of agent, a scout. Upon find-
ing food, a scout will not pick it up, but will merely broadcast its location to the
gatherer agents, and continue searching. This can be viewed as a second implicit
desire, with the scout agent’s desire being to gather information rather than food.

2 We take utility to be the negated cost of delivery, so that a shorter delivery yields a
higher utility. The cost of delivery is the number of steps from the agent’s location via
the location of the food to the depot location.
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As implemented, the scout is statically determined; it may not switch to de-
livery mode. However, it is easy to envisage a scheme in which agents switch to
scouting dynamically, thus completing the full BDI repertoire of mental attitudes.
In a scenario in which all the agents are randomly searching, the first agent to hap-
pen upon food might switch to scout duty, combing the rest of the area while the
other agents collect the food it has discovered. In this manner, unexplored areas
(and hence concentrations of food) would be explored, rather than the first food
simply being delivered and forgotten about.

2.8 Exploration

Initially the agents do not know where the depot is located or which cells of the
grid contain food. They must therefore explore the world around them. Dividing
the world into quadrants and assigning each agent to a quadrant would be the most
efficient way to explore the world completely, but this ignores over-exploration of
repeatedly visited areas (i.e. the area around the depot). For this reason, a pseudo-
random walk technique is used for exploration, utilising trail markers to ensure that
agents prefer to explore cells that have not been as frequently visited.

A completely random walk based on Brownian motion would not be efficient
enough since it tends to over-explore some areas at the expense of others. We chose
to implement a more directed approach based on pheromones. Each agent drops a
fixed amount of pheromone each time it enters a cell, similar to the methods used in
ant colony optimisation ([DMC96], [GCO05]). An agent can smell the concentration
of pheromone in its neighbouring cells and probabilistically decides to move in a
direction which is under-explored. If there are one or more unexplored adjacent cells,
it will always choose a move to one of these cells. This pseudo-random walking leads
to the uniform exploration of the world. It also compensates for over-exploration
of the area around the depot; the repeated trips of agents to this location mean it
would be heavily over-explored if a quadrant-based strategy were used.

However, there is a disadvantage to simply counting all the visits to a cell since
the start of the simulation. In an environment in which food is continuously appear-
ing, the goal of a search algorithm must be to ensure each cell is visited as regularly
as possible. In a system with permanent pheromones, a cell that has been visited
only once, but very recently, appears more attractive to explore than a cell that
was visited 10 times, 100 turns ago. In fact, the opposite is true, and the cell with
“stale” pheromones should be explored preferentially. For this reason, a pheromone
decay mechanism has been implemented and proved useful, whereby pheromone
values decrease over time according to a variety of formulae. This ensures that cells
which were over-explored in the past do not get unreasonably ignored.

A further advantage of random walking is its use in avoidance of deadlocks.
When two agents block each other’s paths they will randomly move out of the
way. While they may not successfully avoid each other instantly, due to the random
choice of direction, the avoidance routine inevitably resolves the deadlock, since it is
statistically impossible for both agents to choose the same move for ever. In addition,
this method is much simpler to implement than exhaustive characterisation of every
possible deadlock, along with explicit strategies for resolving them.

Most importantly, using this flexible movement behaviour our implementation
adapts very easily to unknown and even dynamically changing environments.

3 Implementation

Our design requires an implementation language that allows for multi-threaded
execution of agents. We chose Qu-Prolog [RW03] because it allows for easy, declar-
ative description of the higher-level reasoning involved in intention selection and
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negotiation. Its flexible system of dynamic predicate manipulation also provides
an unconstricted environment in which to construct and modify the simple agent
language we have used, while simultaneously being descriptive enough to allow the
lower level algorithms to be concisely expressed.

The publish/subscribe mechanism we described in Section 2.5 is realised using
broadcasting via an Elvin [SABT00] server. Direct negotiation between agents makes
use of the Interagent Communication Model (ICM). Its communication server pro-
vides agent naming facilities and the means to encode, transport and queue symbolic
messages.

Effectively, we are using three forms of communication—point-to-point com-
munication for negotiations, broadcasting for events and knowledge sharing, and
indirect communication via the environment using pheromones for exploration.

4 Analysis/Conclusion

The foundation of the broadcast and negotiation techniques implemented is a good
supply of information about the environment. In scenarios where there is more
known food than the agents can collect at once, these techniques have a potential
to improve the utilisation of the agents, since the time spent conducting relatively
unguided searches is limited. However, this knowledge of food locations needs first
to be obtained, hence the introduction of a scout agent. The impact of the various
techniques implemented is briefly assessed here.

For our quantitative analysis, we fixed the depot at location (10,10) and ran the
simulation until 100 items of food had been collected and delivered. The agents were
still required to discover the depot on each run. Ten runs of the simulation were con-
ducted for each scenario. The average number of steps for one food delivery (psteps),
the standard deviation of the number of steps (ogeps) and the average number of
successful negotiations per delivered food item (pney) have been measured.

Table 1. Quantitative results when food is seeded every 20 seconds

Scenario Hsteps Osteps Hneg
4 gatherers (no pheromone, no negotiation) |73.7 3.32 n/a
4 gatherers (pheromones, but no negotiation)|55.7 1.27 n/a
4 gatherers (pheromones and negotiation) 56.4 2.07 0.20
3 gatherers and 1 scout (pher. and neg.) 55.6 1.1 0.29

This shows that adding guidance to the randomly walking ants with the help of
pheromones significantly improves their behaviour. However, adding negotiation
does not seem to improve the results. We believe this is due to the low rate at
which food is seeded into the environment. The negotiation usually improves a
combined delivery of two ants by about 10%. However, the ants spent the majority
of their time searching for food or the depot. Only about 10% of their time is spent
collecting and delivering and so the improvement achieved by adding negotiation is
only 10% of 10%, equivalent to 1% overall.

In the high seeding-rate environment (with food seeded every 7 seconds), having
a dedicated scout agent proves significantly detrimental to the team performance.
This is unsurprising, as with high rates of seeding, food is sufficiently abundant that
the agents have no trouble finding food on their random walk. The team with a scout
still performed better than would be expected of a team consisting solely of three
gatherers, however, experiencing only a 9% performance drop despite effectively
losing a quarter of the delivery capability.
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Table 2. Scout effect with varying seeding rates

Scenario Seeding  |ftsteps Osteps [ineg
4 gatherers high 28.9 0.74 0.22
3 gatherers and 1 scout high 31.6 1.28 0.18
4 gatherers low 56.4 2.07 0.20
3 gatherers and 1 scout low 55.6 1.1 0.29

In the low seeding-rate environment (with food seeded every 20 seconds), how-
ever, the benefit of the scout agent completely compensated for the loss of delivery
capacity, roughly equalling the delivery rate of four gatherers. In effect, the scout
provides sufficient global knowledge to allow the agents to employ their high-level
reasoning much more frequently, resulting in more efficient collection of the known
food. As the delivery agents leave trails every time they visit the depot, the scout
agent tends to explore the areas further from the depot, discovering concentrations
of food that the delivery agents are unlikely to find.

As predicted, the usefulness of the scout agent inevitably depends on the rate of
seeding. In an environment with a high rate of seeding, the food density is such that
it becomes more efficient to simply have all agents collecting, since they are likely to
find food soon after leaving the depot on their random search. Additionally, a scout
agent in this situation tends to over-explore the edges, drawing the gatherer agents
further from the depot than necessary. In a food-sparse (and thus information-poor)
environment, however, the scout becomes more useful despite the loss of one agent’s
delivery capacity.

While our preliminary results do not show a scenario in which a scout agent
provides a decisive advantage, they do indicate that there are situations in which a
definite benefit exists. As a future avenue of investigation, we believe that allowing
the agents to dynamically switch roles offers potentially superior results.
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Abstract. This short paper describes the design and development of a
simple agent system aimed at addressing the food gathering problem set
for the 2005 CLIMA contest. Our system is implemented as a collection
of reactive agents which dynamically switch between a number of be-
haviours depending on interaction with their environment. Our agents
maintain no internal representation of their environment and operate
purely in response to their immediate surroundings. The agents collec-
tively map the environment co-operating indirectly via environmental
markers and they use these markers to assist them in locating the depot
when they discover food. The required behaviour emerges from the in-
teraction between agents and the marked environment.

The application can be downloaded from:
http://219.1.164.219/~robert/pwBlog/wp-content/CLIMAbuild.zip

1 Introduction

Jennings et al. [1] note that a major selling point of purely reactive agent sys-
tems is that overall behaviour emerges from interactions between component
behaviours and the agent’s environment. This inherent simplicity makes reac-
tive agents attractive but it also masks a number of difficulties. The most notable
are those of designing agents in such a way that they can take account of non
local information and in such a way as to be able to improve their agent level
performance over time. Jennings et al. further note that agents using a large
number of behaviours can quickly become too complex to understand.

Recent research in normative systems and, particularly, normative reactive
systems may provide the means of describing and constraining agent behaviour
in a manner which allows us to address this difficulty. For many problems in
a tightly bounded environment — problems such as industrial process control
or safety systems — reactive agents may be ideal and a fuller understanding of
their potential behaviour will be beneficial in allowing their use in increasingly
complex scenarios. This contest environment provides such an environment and
is, we feel, ideal for the application of reactive agents.



Reactive agents generally operate by having predetermined behaviours or
sequences of actions intended to deal with the various circumstances that the
agent may encounter. As circumstances change an agent may switch behaviours.
Our agent design involved identifying problems within the environment and de-
signing behaviours to address them. This switching between behaviours brings
a number of constraints. If an agent’s behaviour involves maintaining a record
of data and the agent switches to another behaviour, that does not maintain
this data, then this data may become outdated. In a dynamic environment such
internal world data may be dangerously out of date when the agent returns to
using it and maintaining the data my be expensive for a resource bounded agent
concentrating on other tasks. We avoid such problems by letting agents use only
very local data and data about their internal state or history.

2 The problem — a general approach

We approached the problem by identifying sub-problems which we could asso-
ciate with agent roles. The roles assigned were those of locating food and, when
food has been found, transporting it to the depot. Both of these roles involve
searching the environment, the former for food which may be at random loca-
tions and the latter the depot which remains in a fixed location. Clearly it is in
the system’s benefit to have all agents aware of the depot so when one agent finds
it some means of indicating its presence to others will be a valuable asset. We
have limited communications options by restricting our design to being purely
reactive and we limit each agent to being able to carry only one food unit.

We have assumed that the depot location is unknown initially but that it
remains in a fixed position throughout a run, when an agent discovers the depot
it discovers its permanent location. This leads to a minor difficulty, our agents
operate using only very local data and don’t know their absolute position in the
world ® which means that they cannot remember an exact depot location. We
address this by letting agents leave local markers in the environment. Agents
use a random walk to search for the depot. When an agent finds the depot it
initialises a “dropper” which allows it to leave a trail of pheromone like weight-
ings on the cells that it visits after having been on the depot cell. Despite the
extreme simplicity of this system it allows agents acting only with local data to
co-operate in mapping their environment in a way which facilitates the task of
carrying food to the depot.

The depot location problem within food transport role is addressed by three
agent behaviours; depot-searching, the depot-marking and the depot-seeking. These
behaviours, respectively, involve a random walk looking for the depot cell, a ran-
dom marker laying walk searching for food and a directed pheromone gradient
following walk whilst carrying food back to the depot.

3 Co-ordinate values are only used as a means of keeping agents in bounds and dis-

playing user friendly data. Beyond ensuring that the agent doesn’t try to move out
of bounds they are not used in any of the agent’s operating decisions.
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The second search problem — that of finding food — cannot be approached
in the same way since food is deposited randomly by the system. Such random
placement precludes structured search behaviour by the agents. Food may well
appear in a location already searched. The specification indicates that food can
only be seen on a cell that an agent is visiting so this rules out giving food a
smell that agents can detect. We address this problem with a simple random
walk and there is one food-searcher behaviour assigned to the food locating role.
This behaviour may be concurrent with the depot-searcher and depot-marker
behaviours.

Searcher behaviours involve random walks and seeker behaviours involve trail
following. There is no food-seeker behaviour so food searching is always a random
process and its performance will not improve over time. Seeker behaviours involve
using environmental markers left by agents to track previously located objects
with persistent locations. It is expected that the performance of seeker type
behaviours will improve over time as the environment is more accurately mapped
during the random walk of food-searchers.

The food searcher and depot searcher behaviours can operate concurrently.
Considering the agent’s behaviour in this manner provides a convenient method
for analysing behaviour transitions, these are shown in figure 1.

Bonabeau et al. [2, page 26] describe a broadly similar process where ants in-
fluence or recruit other ants so as to guide them towards persistent food sources,
such recruitment based solely on pheromones is known as mass recruitment.
The depot-marking behaviour is an instance of this mass recruitment as depot-
searchers (agents that have yet to find the depot) make use of the pheromone
trails from agents that have already located the depot. We have also briefly ex-
perimented with other environmental marking methods but felt that these were
uncomfortably close to requiring global knowledge or data, something which we
are trying to avoid.

3 The agents

Our agents have two modules, a simple reactive core and a move manager. The
reactive core senses details of the agent’s immediate environment and takes ac-
tions depending on its percepts. The agent’s roles and component behaviours
have been briefly described in section 2. The agent’s “cycle” involves sensing
its environment, selecting a behaviour, executing that behaviour then making
either a directed or random move. Behaviour selection is very dynamic and an
agent may switch behaviours on each cycle through its core module. In this en-
vironment all behaviours either execute concurrently (such as food-searcher and
depot-searcher), or one is suppressed by historic actions (such as having located
and picked up food the food-searcher behaviour is suppressed in favour of the
depot-searcher behaviour).

Our agent’s pheromone tracking behaviour is very simple, finding the depot
triggers the agent’s depot-marking behaviour causing the agent to prime its trail
marker and reinforce any environmental markers in locations it passes through. It
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Depot-searcher Find marker Depot-sesker

Pick food
Pick food Drop food
Find depot
Depot-searcher Depot-marker
Food-searcher Find depot Food-searcher

Fig. 1. Agent behaviour transitions.

will reinforce other agent’s markers but does not reinforce its own. Finding food
will trigger the depot-seeker behaviour causing the agent to stop marking and try
to get back to the depot by following marker gradients. The other environment
marking methods, mentioned in section 2 that we briefly experimented with were
of comparable complexity.

The move manager is coupled to agent core and simply makes sure that
the agent doesn’t move out of the world’s boundaries. This coupling is loose
in the sense that the agent doesn’t monitor what the move manager does and
merely requests a pheromone gradient directed move or a random move. Non
determinism caused by the move manager not executing a directed move is
handled by the agent’s operating in cycles, each cycle is a sense, select, act
sequence. This small source of non determinism is probably swamped by the
non deterministic aspects of food location in the environment.

4 The problem — logical aspects

Agents ought to take food to the depot and they ought to do this in as efficient
a manner as possible. Considering what agents ought to do allows us to adopt
a deontic view of the system but this brings difficulties. Horty notes[3, page 36]
that standard deontic logic partitions future worlds into sets of ideal worlds and
non ideal worlds. Agents either take food to the depot or they don’t, there’s no
notion of a good or bad way of doing this and, consequently, no notion of improv-
ing performance. Norms are typically a social phenomena [4] which makes them
intrinsically a multi agent concept but do they have a place in our system? Boella
and van der Torre [5] indicate that an important feature of norms is that they
allow for behaviour that deviates from ideal and this may allow us to consider
norms as a performance improving influence. Our agents are extremely simple,
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they have fixed transitions between behaviours (see figure reffig:transitions) and
no internal systems to allow considered choice, their operation appears to be
constrained rather than norm governed. Agents are constrained by their behav-
iour to drop food on the depot but they may or may not take the best route from
where the food was located. Our agents are always capable of taking food back
to the depot, a random walk either way would, in this bounded environment a
random walk would eventually locate the depot.

When every cell in the world has been marked the agents use a subset of
their available behaviours, the depot-searcher is no longer required and transi-
tions are only between depot-seeker and depot-marker/food-searcher behaviours.
We think that this can be described as an emergent norm which guides agent
behaviour away from the depot-searcher behaviour. If our belief holds and we
consider our system as a meta agent then this may be a very simple and possi-
bly degenerate example of of what Boella and van der Torre describe in [6]. Our
simple agents delegate the task of improving their performance to an emergent
norm and they contribute to its emergence.

5 Observations

Our system performance evaluation had two criteria, the directness of the route
taken by agents carrying food back to the depot and whether or not food accu-
mulated in the environment. Test runs were carried out by seeding the environ-
ment with a few food units then starting the agents. Initial agent performance
is rather poor, agents rely on random searches for both the depot and food.
Agents that have found food wander at random and don’t appear to be do-
ing anything useful whilst food continues to appear. When one agent finds the
depot and begins marking the environment other agents gradually move from
random depot-searching to pheromone gradient following depot-seeking. At first
this means following, in reverse, another agent’s random walk so as to reach
the depot. Over a period of time the gradient mapping spreads more widely
and agents begin taking more direct routes to the depot with a concomitant
performance improvement.

Agents will occasionally becoming trapped by a “livelock”. This livelocking
manifests itself when an agent appears to walk repeatedly over the same looped
path. This only occurs when a food carrying agent is following a pheromone gra-
dient and encounters local maxima. Because the agent follows gradients without
backtracking these local maxima may trap the agent. Livelock may be broken by
another agent passing through a cell adjacent to the loop and altering pheromone
levels sufficiently to allow the trapped agent to escape. The competition system
has a small number of agents and if there is a high food density then there is
a risk that all four will become livelocked especially where local maxima form
within a few grid squares of the depot, a location to which depot-seeker agents
are already drawn.
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Intuitively if there are non food carrying agents then there is a chance of
a livelock being broken. Dealing with this difficulty whilst maintaining a local
data only approach is an interesting problem.

6 Installing and running the application

The application can be downloaded from the link in the abstract. This is a zip
file which contains seven files, one executable, four DLLs which define agent
behaviour, a system configuration file indicating which agents to automatically
load on startup and a PDF with brief user instructions. Copy all of these files
into a directory on the target machine and run the executable. The program
will automatically load the agent DLLs specified in the configuration files and is
ready to run.

7 Next steps.

Despite their simplicity our agents do, what we consider, a good job at carrying
food to the depot and improving their performance over time. We have concen-
trated on the depot and not paid much attention to food location simply leaving
this to an unstructured, random search. Dealing with the occasional appearance
of livelock whilst maintaining a local data only approach presents an interesting
problem. Adopting a normative approach we could prohibit livelock. Saying that
agents ought not to livelock implies an avoidance capability. One approach is to
have “defender agents” [7] which look for possible livelocks and release trapped
agents. The difficulty of doing this using only local data is obvious. Our agents
are very simple but considering them as a normative system gives a rich view of
their interactions and raises a number of questions about how best to improve
their performance. If an agent finds food and is unable to pick it up then marking
that food location — in a similar manner to the depot — may intuitively seem to
be a good step but this may lead to a greater possibility of all agents becoming
livelocked.

Our system was developed solely for the CLIMA contest but it has opened
up a number of interesting areas to investigate. The observations [1] in section
1 seem to hold even for this very simple system. A normative approach may
provide a means of better understanding the interactions in reactive systems.
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Abstract. There is a recognized lack of Agent Oriented Methodologies to
trandate a detailed design to a software implementation; here we address this
problem with a solution approach. Tropos is one of the most used
methodologies to design agent systems and we use it to show a design for the
Food Collecting Agent Problem. Our solution includes autonomous behaviour,
beliefs, multiple roles playing, communication and cooperation in a simple
way. We propose a method to generate a Prolog implementation from a Tropos
detailed design, adding a step allowing relevant decisions being incorporated at
design time. Besides we show how to get the Prolog implementation from this
detailed design. Our experience shows that this proposal is an intuitive, direct
and effective way to get a Prolog implementation for an agent system. We end
the paper with illustrations about our collecting team in action.

1 Introduction

Nowadays there is a recognized lack of Agent Oriented Methodologies (AOM) at
the implementation stage [1, 2]. Tropos [3, 4] is one of the most used AOM,
however, in spite of al its virtues, its implementation stage does not have enough
guidance for declarative software implementations [5]. In this paper we address this
situation and propose a method to get a Prolog implementation starting from a Tropos
design. To illustrate our method we use the Food Collecting Agent Problem (FCAP)
as a case study, which is about a grid-like environment where agents can move from
one dot to a neighboring dlot if there is no agent aready in the target slot. In this
world food can appear in a randomly way in an empty slot. There is a specia slot
where the agents must collect the food, named the depot. In the next section we show
briefly the stages of Tropos and our design for the FCAP, in section 3, an additional
design step oriented to get a Prolog implementation is proposed and finally we show
how to convert this output into a computer program.



2 Using Troposfor the FCAP

Tropos [3, 4] is an agent-oriented methodology for building software systems. It is
adequated to describe both the social (organizational) environment and the system
itself. According to [5], Tropos covers from early requirements to implementation
with a different clear focus on each stage: (1) Early requirements focus on social
context; (2) Late Requirements focus on system-to-be; (3) Architectura Design,
focus on systems components; (4) Detailed Design and (5) Implementation, both
focus on software agents.

Tropos uses the concepts of actors, which can be organizational, human or
software; positions, roles and agents, as specidizations of actors; goals and socid
dependencies for representing the commitments or agreements of actors (dependees)
to other actors (dependers). The type of the dependency depends on the intermediary
element (dependum) between actors. It can be goal (hard or soft), plan or resource.
Thus the basic structure of social representation is the dependee-dependum-depender
relationship. In the figure 1 and in the figure 2 we have illustrated the graphical
representation of Tropos constructors according to their use. For further details about
Tropos see [5].

In Tropos, at the Early Requirements stage, the analysis of the environment must
be done. Since in the FCAP case study does not have a socia context, we omit this
stage.

At the Late Requirements stage the system-to-be is analyzed and the functional
and non-functional requirements are specified. For FCAP we recognize two main
actors, the food provider (FP) and the collector team (CT). There is a main
dependency that represents the need of the CT from the FP for food, either initial or
produced, but also the FP has constraints for the behavior of the CT in the food
environment. Although there is an evolution of diagrams inside of this stage, we
show the final output in the figure 1.

Actor Typet R LIII:rEII[E Rtk Corsirc s
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Fig.1 The output of the Late Requirements stage
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In the Architectural Design stage the global architecture of the system is analyzed,
new actors are incorporated and their main capabilities are identified. In our case we
have added a teamMember position that represents all member of the team. Moreover
we have decided to tackle the problem with the roles collector (for gathering food and
disposing it in the depot) and explorer (for looking for food in the grid). Finally we
have delegated in the ruleGuard role the goal to keep an adeguate behavior. When we
specify that the position teamMember covers the ruleGuard role, means that all
members of the team must play this role. In figure 2 we show the output of the
Architectural Design. For simplicity we have omitted the positive contributions from
the Team Member, Collector, Explorer and Rule Guard goals to the main softgoa of

the Collection Team.
] *
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Fig.2 The output of the Architectural Design stage

At the Detailed Design stage, each actor is individually analyzed and each goa of
the Architectural Design is decomposed to specify the actor capabilities. Thus, for the
ruleGuard role, we have designed capabilities to access the own position, to pick up
food, to know empty neighbor slots and to move just into these dlots. For the
teamMember role we have identified a belief about the food environment, this belief
can be updated with agents interaction, thus the cooperation among team is based on
sharing their beliefs. Moreover we have provided direct access to the position of the
depot and we have designed the capability to advance forward a target point in the
grid. For the collector role we have the capahilities of disposing food in the depot,
moving to the depot, moving for a guessed food position (based on its belief) and, in
the case of no food information, looking for it in unvisited slots. We have designed a
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major strategic, which specify that collectors have different search spaces according
the collectors quantity and the size of the food environment.

Finally for the explorer we have designed the capability of moving sequentially by
the grid, and the necessary data resources to support this capability have been
identified. In the figure 3 we show a partia view of the Detailed Design output, we
illustrate this stage with the Rule guard and Team member roles, for simplicity we
have omitted the relationships and softgoal contributions among the actors. The
simplicity of the explorer role, based on a sequential moving over the grid, alows
focusing on less classical design aspects. In the next section we show our extension
for the detailed design of the collector role.
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Fig.3 Detailed design for Rule Guard and Team Member roles

3 Extending Detailed Design for Prolog | mplementation

In this section we explain how to extend the Detailed Design stage to get a declarative
implementation. We propose to replace the AUML activity diagrams used in Tropos
by scenario sequences. These have been used at the requirements stage in a web-
based software system [6]. We think that it is a ssimple way to specify sequences
when they are needed. In Prolog these sequences must have the convenient order to
prove the logical goals. This has relevant logical and efficiency effects hence it is
very convenient to have a representation of these decisions at design time. Besides we
propose goal and plan root elements be implemented like Prolog. In the figure 4 we
show a scenario sequence for the collector role, here the design indicates that the first
goal to be proved is put food in the depot, but this means to check that the agent is
over the depot and has food in the buffer, otherwise the second goal, go to the depot,
should be proved, etc.

For goal and plan root elements we propose to specify the programming activation
time, thus we propose four implementation attributes, namely at begin, at end, at call
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and always. At call means that the goal or plan isinvocated from another goal or plan.
At begin and at end indicate that the selected goal or plan should be proved just one
time, at start of run time or at the end. Always means that the goal or plan should be
permanently proved. If there is a multi thread Prolog implementation it is suggested
that each goal or plan with the always attribute be a different thread.

Finally we propose to make the decisions about data representation. The design
elements, which require having a data representation, are resource and belief. In
Prolog we have two main choices: a data structure (generally alist) or the knowledge
data base (KDB) included in Prolog. In our case, we have decided to represent the
food environment with predicates (KDB) and the rest of resource and belief el ements
with lists.
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Fig.4 Partial Extended Detailed Design for FCAP

At implementation time we have a set of recommendations to trandate the
extended detailed design. First, make the instantiation of the problem with the
predicates agent, play, position, isa, cover, etc., i.e. the actor types and actor
relationships from Tropos. For FCAP we have generated a specific instantiation with
five agents, a Food Provider agent (fp), an explorer agent (ca), and three collectors
(en, xa and ge), we show this from lines 28 to 41 in figure 5. Second, to implement
resource and belief elements as part of the define predicate, identifying the name of
the role as first argument, and a data structure which define the resources (e.g. lines
182 to 184 in figure 5). Third, to group root elements (goal and plan) under the
identified activation times, each activation timeis a predicate that needs the actor type
(atom) and the agent name (variable); thisis illustrated from lines 185 to 192 in the
figure 5. Fourth, to program the goals and a plan using a set of predicates that act
over the defined data structures and clauses. This step motivates the reuse of already
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programmed predicates but is not an automatic step because the specific clauses
depend on the semantic of the goal or plan. For example we show, in figure 5, the
aml and getResour ce predicates that implement the shareGrid plan (lines 452 to 455).

28
29
an
3
32
33
4
i)
36
ar
38
39
40
4

agent (fp) .
agent (ca) .
agent (xa) .
agent (en) .
agent [(ge) .
playige,collector) .

pury

play(xa,collector) .
playien,collector) .
playica,explorer).

play(fp, foodProvider) .
position (tesmMetber) .
izsa(collector,; ceamtember) .
isa(explorer, teamMenber) .
cover (teamMenber, ruleGuard) .

=

182 define (collector,
183
184

185 hegin(collector,

[ [eollector] .,
[resources,
[foodBuffer, 0]] 1 1.

=

186 always (collector, MyName) 1 -

187 [
188

189

190

191

132 end (collector, ).

putFoodInlepot (MyName) |
goTolepot (MyNams) |
pickUpFood (MyName] |
lookForFoodInMyGrid (MyName)
lockForFood (MyName) ) -

453 shareGrid (MyName, TheGrid) 1 —
454 arnl | MyName, teamMewber) ,
455 getResource (MyName, mygrid, ThetGrid) .

Fig.5. Direct implementation of the detailed design

And fifth, we have made the goals that allow the access to the set of begin, end,
and always predicates, namely runBegin, runEnd, and runAlways (without
arguments). It is very important to note that the definition order of agents will be the
caling order, thus if we run runBegin, it will be executed first the fp begin and the
last one will be the ge begin (according to lines 28 to 32 in figure 5). These logical
goals are generic and could be used in any agent system implemented in Prolog.

The resulting system generates an output that we run under a web browser. We
have set the system with an 8x8 food environment and fifteen seconds for a running.
We illustrate the resulting system in figure 6 where de depot is the dark sot with the
number O at start and 6 at the end. The food is into light slots and the agents are the
dlots with the strings ca, xa, en and ge.

Report at Tha Jun 02 19:18:42 2005 = Report at Thua Jun 02 19:18:42 25 7
xa| e
xa|
0] ca BN |
. |
ea enf
19:18:42:46 - displaying 1P:15:56:955 - fimal srare

Fig. 6. Running the resulting agent system
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5 Conclusions

In this paper we have proposed a specific way to get a Prolog implementation from
a Tropos design. Although we have used the FCAP, the approach is a generic
developing proposa based on the atomicity of the detailed design. However a set of
different projects should be carried out to get stronger evidence about its utility.
Moreover this approach requires a set of generic predicates which do not have a
design representation in each specific problem. However, when they have been
developed, the programming is intuitive and direct. Thus a relevant part of the code
could be generated automatically and the rest could be sufficiently documented for
programming aid.

About FCAP we have designed a solution using multiple roles playing (Team
member, Rule guard plus Collector or Explorer). The agents cooperate in the
solutions sharing information about their belief of the world. Besides, the common
behavior is grouped in the Team member role, being an efficient solution to the
problem. Our experience indicates that this proposal is an intuitive, effective and
efficient way to implement agent-oriented systems.
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Abstract. In this work, we describe strategies for multi-agent coordina-
tion, where adequate coordination means a system performance increase.
In the main strategy, when a agent can’t act by any reason, it choose the
agent more capable in the environment to execute these action. The re-
sults show the strategy efficacy, especially when the environment increase
the necessity for a reaction.

1 Introduction

The advantages obtained with a multi-agent approach can be easily lost if an
adequate coordination process between agents can not be established. To ex-
plore the real possibilities of a multi-agent strategy, the agents in the society
must be able to cooperate in a coordinated way. In the Artificial Intelligence
literature, several research problems where proposed where these coordination
strategies can be implemented and tested, e.g., robot soccer, rescue are surveil-
lance activities, etc. One common artificial environment consists of a world in
a grid format, that agents should explore to find resources, normally associated
with “food”. The idea of all these problems is to measure how the performance
of the agents, in this case the quantity of food that is collected, increase with
coordination, i.e., what is the impact of team work.

In this context, we have developed a software! that simulates a grid world,
with twenty lines and twenty columns, where food can appear at a randomly
chosen case of the world at regular time intervals. Four agents should coordi-
nate their actions in the order to collect the maximimal quantity of food in a
given period of time. Any agent that finds a food unit, should depose it into
a given storage case. To evaluate the coordinate strategies we can modify the
environment conditions to determine the better moment to use the strategy. The
software was implemented in C++, using object orientation. The agents are im-
plemented by a knowledge-based system, whose rules are explicitly codified into
the software main program. As a base case, the performance without any co-
operation strategy is considered. In this case, the agents search for food alone,

! The software can be downloaded from:
http://www.das.ufsc.br/“eder/clima.src.tar.gz.



without taking into account the other agents. As a first cooperation strategy we
propose some actions to be taken when an agent finds food in the way to the
depot.

2 The Environment: A Grid World

The environment consists of a grid, a matrix with twenty lines and twenty
columns. The intersection between a line and a column is called a case. At
each moment, each agent is located in exactly one case. One case is chosen to be
the depot case, where all collected food should be stored. The simulation occurs
in cycles, i.e., the temporal unit is a cycle. In a cycle, an agent can perform one,
and only one, action, that can be either a movement to an adjacent case, or the
emission of a message. Initially, the agents are located in the grid corners and
the case depot is located in the center of the grid, in position (10,10).

According to the environment rules, one food unit appears automatically at
every n cycles, where n is a simulation parameter. The experiments showed that
the strategy efficacity varies with the parameter value. Others constraints were
considered to create a problem more adequate to the multi-agent approach. All
simulations were performed using a time interval of twenty seconds. In this way,
we treat with a response pattern. The agent can carry only one food at a time.
Once an agent collected a food, it can only leave it in the depot. There is no di-
rect communication, all communication traffic is carried out by a communication
manager. When an agent needs to send a message, this message is transmitted to
a mailbox, and the communication manager delivers it to the message receiver.
An agent can receive several messages, but it can participate in only one coop-
eration process at each time, i.e., during one cooperation process, the agent can
not engage into a new cooperation process.

The software was implemented in the C++ programming language [1], using
an object-oriented approach. A total of seven classes were implemented. The
classes are: (i) Position: indicates a position in the grid; (ii) Food: contains the
list of positions in the grid where the food is located; (iii) Message: contains
constructors for messages with different performatives; (iv)Mailbox: used by the
environment to manage the agent’s messages; (v) Clock: implements the envi-
ronment clock; (vi) Interface: verifies and validates the agent’s actions in the
environment, besides providing the input information for the agents; (vii) Agent:
provides the agent internal variables and the actions in the environment, includ-
ing movements and messages exchanges.

The main program, clima.cc, implements the four agents and their interac-
tions with the environment are implemented, besides providing the interface with
the exterior. This interface is in command-line form. In every cycle, the system
updates the environment state, i.e, the simulation time, the cases with food, the
agents positions, the number of foods collected, the number of food units already
stored in the depot and the number of food units collected individually by each
agent and the positions where they were collected.
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For simplicity, the program was implemented in a totally sequential way. A
more realistic approach would consider five different processes, one for for each
agent and one for the environment, however the sequential approach response
was satisfactory with the constraints described in this section.

3 The Cooperative Strategy

Each agent encapsulates a knowledge-based system. Nevertheless, the multi-
agent system is a homogeneous one, where all the agents have the same knowl-
edge about the domain. In each cycle, the agent is allowed to perform only one
action, that can be either a movement to a new case, or a message emission to
another agent, through the environment mailbox.

In a first strategy, there is no cooperation between the agents. Each agent
search for food independently. The knowledges bases are build using the method-
ology described in [2], where a High-Level Petri net is used to describe the agent
knowledge. This Petri net can be seen in the figure 1. In this first strategy, the
transition ¢5 does not exist.?

) P
t2 t1
Mhavejood ~ food(p)) Wejood ~ not food(p))
Tell(k, have_food) Tell(k, null)
Action(Go_To_Position(depot)) Action(Search_Food())

P2

t4 t3
Ask(k, have_food ” position(depot)) Ask(k, have_food ” not position(depot))

Tell(k, not have_food ~ Add(food_in_depot)) Tell(k, null)
Action(Search_Food()) Action(Go_To_Position(depot))

Ask(k, have_foid:flotﬁ(ﬂ)u

‘ Action(Send_Message(position(food))) ‘

Fig. 1. The knowledge base of each agent represented by a Petri net.

The token represents the knowledge base (K). When this token enables a
transition, an Ask is made to the K, that must return an answer. This answer

2 The knowledge base represented in the Petri net is a simplified one. However, it is
enough to understand the agent dynamic.
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is represented by a directive T'ell, where the inference engine returns the results
to K. Besides that, an action is also inferred. This Petri net, in a next stage, is
translated into a rule set that constitutes the knowledge base of each agent.

According to the knowledge base presented in figure 1, when an agent finds a
food unit in its way to the depot case, it follows its way, and the found food unit
is not collected. In a second strategy, when this state happens, a cooperation
process is started, represented by the inclusion of the transition t5.

Now, when an agent finds a food unit in its way to the depot, it sends a
message to the other agents with the food position. The agents answer this
message telling the distance between them and the food position. The closest
agent is considered the winner and starts a cooperation. When the food is stored
in the depot, the cooperation is finished.

Following the FIPA-ACL [3], a message is constituted by a performative field,
a sender field, a receiver field and a content field. The content field contains the
agent position or the distance between the agent and the food. The sender and
receiver fields contain, respectvilly, the identification of the agent that has sent
the message and the identification of the agent that receives it. When the receiver
field contain “all”; all the agents receive the message.

The performative field describes the type of communication act intended
with the message. A request is used when a cooperation is requested. A request
should be answered with a propose or with a refuse. In the first case, the sender
agent makes a proposal telling its distance from the food unit. In the second
case, the agent is not ready to cooperate, because it is either carrying a food
unit or involved in another cooperation process. The requesting agent receives
the proposals and chooses the best one. In a last step, it sends a message with
an accept performative to the winner and one with a reject performative to all
the others. It is important to consider that only one message is delivered per
cycle.

4 Results

The simulations were ran in a computer with Intel Celeron 2 Ghz processor,
256MB of RAM memory, running Mandrake Linux 10.0, using the gcc-2.96.

The performance of the system is measured by the number of cycles that
the system needs to store a food. Considering a period of 80 cycles to appear a
new food, the four agents, without any cooperation strategy needs 80.7 cycles to
collect and store a food in the depot. If we consider the cooperation strategy the
media is all the same: 80.6. The same results are obtained if we diminish the pe-
riod down to 10 cycles. With a period of 40 cycles, the multi-agent system needs
41.1 cycles to collect and store one food unit, with or without the cooperation
strategy.

With a period of 10 cycles between each new food unit, the strategy starts
to make some difference. Without cooperation, the agents need 15.2 cycles to
find and store a food unit. Using cooperation, this is reduced 14.8 cycles, still
a minimum difference. When the period is set to 5 cycles, a greater difference
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appears: 10.9 cycles without cooperation and 10.1 cycles with cooperation. In
fact, the smaller the cycle period, the greater is the number of times a conflict
occurs. We consider a conflict when an agent carrying a food to the depot finds
another food in its way.

5 Conclusion

There are many ways to cooperate in this problem. However this work looks to
focus in one approach and analyzes its impact. This strategy consists in starting
a cooperation strategy when an agent finds a food in its way to the depot. In
this case, the agent is still carrying a resource, and is not able to take another
one. In this case it sends a message to the the other agents to discover who is
the closest agent. Once this agent is determined, it should go to food and collect
it.

In fact, this is a special case inside the environment dynamics. It almost
never happens. However, if the period between to succesive food introductions
is diminished, the probability that this situation happens is increased, and the
cooperation turns into an alternative to improve the system performance. This
is the main conclusion of the results presented. The smaller the period between
food appearances, the greater is the effect of the cooperation strategy.

It is important to see that it is not the only way to cooperate in this problem.
Others ways include designate a fix collector that must collect the foods found
by the others agents. In other case, when an agent find a food, it can ask to the
others what they are doing. If there is an agent that is storing the food, it is
informed with the position of the new food, and then goes to it. In others words,
the collector role, in this case, is dynamic.

The approach presented here can model situations in real problems, like the
collecting robots and intelligent routing in networks.
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