
Reasoning about Epistemic States of Agents by
Modal Logic Programming

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. Modal logic programming is one of appropriate approaches
to deal with reasoning about epistemic states of agents. We specify here
the least model semantics, the fixpoint semantics, and an SLD-resolution
calculus for modal logic programs in the multimodal logic KD4Ig5a,
which is intended for reasoning about belief and common belief of agents.
We prove that the presented SLD-resolution calculus is sound and com-
plete. We also present a formalization of the wise men puzzle using a
modal logic program in KD4Ig5a. This shows that it is worth to study
modal logic programming for multi-agent systems.

1 Introduction

Reasoning is an important aspect of agents. In order to be able to make right
actions, an agent should have general knowledge of the field it works on, infor-
mation about the environment, and abilities to interact with the environment, to
make inferences, and to revise its knowledge base. In multi-agent systems, agents
should be able to communicate, collaborate, and sometimes compete with each
other. For this aim, an agent should have knowledge about other agents in the
system and be able to reason about their epistemic states. It is not that an agent
can have all information it wants or can reason exactly as the others, but at least
it can simulate epistemic states of the other agents, using some assumptions. The
wise men puzzle introduced by McCarthy [17] is an example of reasoning about
epistemic states of agents. We will study it in Section 3.

Modal logics and logic programming are useful instruments for multi-agent
systems. Using modal logics is a natural way to represent and reason about
knowledge and belief of agents (see, e.g., [10, 28, 27, 14, 7, 1]). Logic programming
is also useful because logical implication is probably the inference form humans
use most and want to adopt for multi-agent systems. Thus, one can think about
modal logic programming as an approach to deal with reasoning about epistemic
states of agents.

Modal logic programming has been studied in a number of works (see the
earlier surveys [24, 12] and the later works [23, 5, 19, 22]). There are two ap-
proaches: the direct approach [11, 3, 5, 19, 22] and the translation approach [8,
23]. The first approach directly uses modalities, while the second one translates



modal logic programs to classical logic programs. In this paper we will use the
direct approach. This approach is justifiable, as the direct approach deals with
modalities more closely, and modalities allow us to separate object-level and
epistemic-level notions nicely.

In [19], we developed a fixpoint semantics, the least model semantics, and an
SLD-resolution calculus in a direct way for modal logic programs in all of the
basic serial monomodal logics. In that work we do not assume any special restric-
tion on occurrences of 2 and 3 in programs and goals. In [22], we generalized
the methods of [19] and gave a general framework for developing fixpoint seman-
tics, the least model semantics, and SLD-resolution calculi for logic programs in
normal multimodal logics whose frame restrictions consist of the conditions of
seriality and some classical first-order Horn formulas.

In this work, we instantiate the above mentioned framework for the multi-
modal logic KD4Ig5a, which was introduced in [20] for reasoning about belief
and common belief. We prove that the obtained SLD-resolution calculus is sound
and complete. We also give a purely logical formalization of the wise men puzzle
using a modal logic program in KD4Ig5a.

The rest of this paper is structured as follows. In Section 2, we give def-
initions for multimodal logics, define the multimodal logic KD4Ig5a and the
modal logic programming language MProlog. In Section 3, we recall the wise
men puzzle and formalize it by an MProlog program in KD4Ig5a. In Section 4,
we instantiate the framework given in [22] for KD4Ig5a in order to specify the
least model semantics, the fixpoint semantics, and an SLD-resolution calculus
for MProlog programs in KD4Ig5a. Soundness and completeness of the obtained
SLD-resolution calculus is proved in Section 5. (Due to the lack of space we do
not present proofs involving with the fixpoint semantics and the least model
semantics.) Finally, Section 6 contains some concluding remarks.

2 Preliminaries

2.1 Syntax and Semantics of Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language of
classical predicate logic with modal operators 2i and 3i, for 1 ≤ i ≤ m (where
m is fixed). The modal operators 2i and 3i can take various meanings. For
example, 2i can stand for “the agent i believes” and 3i for “it is considered
possible by agent i”. The operators 2i are called universal modal operators,
while 3i are called existential modal operators. Terms and formulas are defined
in the usual way, with an emphasis that if ϕ is a formula then 2iϕ and 3iϕ are
also formulas.

A Kripke frame is a tuple 〈W, τ,R1, . . . , Rm〉, where W is a nonempty set of
possible worlds, τ ∈ W is the actual world, and Ri is a binary relation on W ,
called the accessibility relation for the modal operators 2i, 3i. If Ri(w, u) holds
then we say that the world u is accessible from the world w via Ri.

A fixed-domain Kripke model with rigid terms, hereafter simply called a
Kripke model or just a model, is a tuple M = 〈D,W, τ,R1, . . . , Rm, π〉, where



D is a set called the domain, 〈W, τ,R1, . . . , Rm〉 is a Kripke frame, and π is an
interpretation of constant symbols, function symbols and predicate symbols. For
a constant symbol a, π(a) is an element of D, denoted by aM . For an n-ary
function symbol f , π(f) is a function from Dn to D, denoted by fM . For an
n-ary predicate symbol p and a world w ∈ W , π(w)(p) is an n-ary relation on
D, denoted by pM,w.

A model graph is a tuple 〈W, τ,R1, . . . , Rm,H〉, where 〈W, τ,R1, . . . , Rm〉 is
a Kripke frame and H is a function that maps each world of W to a set of
formulas.

Every model graph 〈W, τ,R1, . . . , Rm,H〉 corresponds to a Herbrand model
M = 〈U ,W, τ,R1, . . . , Rm, π〉 specified by: U is the Herbrand universe (i.e. the set
of all ground terms), cM = c, fM (t1, . . . , tn) = f(t1, . . . , tn), and ((t1, . . . , tn) ∈
pM,w) ≡ (p(t1, . . . , tn) ∈ H(w)), where t1, . . . , tn are ground terms. We will
sometimes treat a model graph as its corresponding model.

A variable assignment V w.r.t. a Kripke model M is a function that maps
each variable to an element of the domain of M . The value of tM [V ] for a term
t is defined as usual.

Given some Kripke model M = 〈D,W, τ,R1, . . . , Rm, π〉, some variable as-
signment V , and some world w ∈W , the satisfaction relation M,V,w � ψ for a
formula ψ is defined as follows:

M,V,w � p(t1, . . . , tn) iff (tM1 [V ], . . . , tMn [V ]) ∈ pM,w;
M,V,w � 2iϕ iff for all v ∈W such that Ri(w, v), M,V, v � ϕ;
M,V,w � ∀x.ϕ iff for all a ∈ D, (M,V ′, w � ϕ),

where V ′(x) = a and V ′(y) = V (y) for y 6= x;

and as usual for other cases (treating 3iϕ as ¬2i¬ϕ, and ∃x.ϕ as ¬∀x.¬ϕ). We
say that M satisfies ϕ, or ϕ is true in M , and write M � ϕ, if M,V, τ � ϕ for
every V . For a set Γ of formulas, we call M a model of Γ and write M � Γ if
M � ϕ for every ϕ ∈ Γ .

If as the class of admissible interpretations we take the class of all Kripke
models (with no restrictions on the accessibility relations) then we obtain a
quantified multimodal logic which has a standard Hilbert-style axiomatization
denoted by Km. Other normal (multi)modal logics are obtained by adding cer-
tain axioms to Km. Mostly used axioms are ones that correspond to a certain
restriction on the Kripke frame defined by a classical first-order formula using
the accessibility relations. For example, the axiom (D) : 2iϕ→ 3iϕ corresponds
to the frame restriction ∀x∃y Ri(x, y).

For a normal modal logic L whose class of admissible interpretations can
be characterized by classical first-order formulas of the accessibility relations,
we call such formulas L-frame restrictions, and call frames with such properties
L-frames. We call a model M with an L-frame an L-model. We say that ϕ is L-
satisfiable if there exists an L-model of ϕ, i.e. an L-model satisfying ϕ. A formula
ϕ is said to be L-valid and called an L-tautology if ϕ is true in every L-model.
For a set Γ of formulas, we write Γ �L ϕ and call ϕ a logical consequence of Γ
in L if ϕ is true in every L-model of Γ .



2.2 The Multimodal Logic KD4Ig5a

Suppose that there are n agents and m = 2n−1. Let g be an one-to-one function
that maps every natural number less than or equal to m to a non-empty subset
of {1, . . . , n}. Suppose that an index 1 ≤ i ≤ m stands for the group of agents
whose indices form the set g(i). To capture belief and common belief of agents,
we can extend Km with the following axioms

– (D) : 2iϕ→ ¬2i¬ϕ (belief is consistent),
– (4) : 2iϕ→ 2i2iϕ (belief satisfies positive introspection),
– (Ig) : 2iϕ → 2jϕ if g(i) ⊃ g(j) (if i indicates a supergroup of a group j

then every common belief of i is also a common belief of j).
– (5a) : ¬2iϕ→ 2i¬2iϕ if g(i) is a singleton (belief of a single agent satisfies

negative introspection).

Thus, for reasoning about belief and common belief, we can use:

KD4Ig5a = Km + (D) + (4) + (Ig) + (5a)

Here we want to catch the most important properties of belief and common
belief, and the aim is not to give an exact formulation of belief or common belief.
The logic KD4Ig5a was introduced in [20]1. It is different in the nature from
the well-known multimodal logic of common knowledge. It also differs from the
modal logic with mutual belief [1].

The given axioms correspond to the following frame restrictions:

Axiom Corresponding Condition
(D) ∀u ∃v Ri(u, v)
(4) ∀u, v, w (Ri(u, v) ∧Ri(v, w)→ Ri(u,w))
(Ig) Rj ⊆ Ri if g(i) ⊃ g(j)
(5a) ∀u, v, w (Ri(u, v) ∧Ri(u,w)→ Ri(w, v)) if g(i) is a singleton

For further reading on epistemic logics, see, e.g., [10, 28, 7, 1].

2.3 Modal Logic Programs

A modality is a (possibly empty) sequence of modal operators. A universal modal-
ity is a modality which contains only universal modal operators. We use 4 to
denote a modality and � to denote a universal modality. Similarly as in classi-
cal logic programming, we use a clausal form �(ϕ ← ψ1, . . . , ψn) to denote the
formula ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)). We use E to denote a classical atom and A,
B1, . . . , Bn to denote formulas of the form E, 2iE, or 3iE.

A program clause is a formula of the form �(A← B1, . . . , Bn), where n ≥ 0.
� is called the modal context, A the head, and B1, . . . , Bn the body of the program
clause. An MProlog program is a finite set of program clauses.
1 The propositional version of KD4Ig5a is decidable. However, we do not have com-

plexity result for it yet. Hopefully, it will be available in the next version of this
paper.



An MProlog goal atom is a formula of the form �E or �3iE. An MProlog
goal is a formula written in the clausal form ← α1, . . . , αk, where each αi is an
MProlog goal atom. The empty goal (i.e. the empty clause) is denoted by �.

In KD4Ig5a, if g(i) is a singleton then we have the equivalence ∇i∇′
iϕ ≡ ∇′

iϕ
for any modal operators ∇i and ∇′

i with the same modal index i. For this reason,
we adopt some restrictions to simplify the form of MProlog programs and goals
in KD4Ig5a. An MProlog program is called a KD4Ig5a-MProlog program if the
modal contexts of its program clauses do not contain subsequences of the form
2i2i if g(i) is a singleton. An MProlog goal is called a KD4Ig5a-MProlog goal
if each of its goal atoms 4E satisfies the condition that 4 does not contain
subsequences of the form 2i2i or 2i3i if g(i) is a singleton.

Let P be an KD4Ig5a-MProlog program and G = ← α1, . . . , αk be an
KD4Ig5a-MProlog goal. An answer θ for P∪{G} is a substitution whose domain
is the set of all variables of G. We say that θ is a correct answer in KD4Ig5a for
P ∪ {G} if θ is an answer for P ∪ {G} and P �KD4Ig5a ∀((α1 ∧ . . . ∧ αk)θ).

It is shown in [20] that MProlog has the same expressiveness power as the gen-
eral Horn fragment in normal modal logics. Moreover, the restrictions adopted
for KD4Ig5a-MProlog do not reduce expressiveness of the language (see [20]).

3 The Wise Men Puzzle

Before considering technical details of semantics of KD4Ig5a-MProlog, we give
a formalization of the three wise men puzzle in MProlog. The puzzle is a famous
benchmark introduced by McCarthy [17] for AI. It can be stated as follows
(cf. [15]). A king wishes to know whether his three advisors (A, B, C) are as
wise as they claim to be. Three chairs are lined up, all facing the same direction,
with one behind the other. The wise men are instructed to sit down in the order
A, B, C. Each of the men can see the backs of the men sitting before them (e.g. C
can see A and B). The king informs the wise men that he has three cards, all
of which are either black or white, at least one of which is white. He places one
card, face up, behind each of the three wise men, explaining that each wise man
must determine the color of his own card. Each wise man must announce the
color of his own card as soon as he knows what it is. All know that this will
happen. The room is silent; then, after a while, wise man A says “My card is
white!”.

The wise men puzzle has been previously studied in several works (e.g., [17,
15, 9, 6, 2, 23, 4]). McCarthy [17] directly used possible worlds to formalize the
puzzle. Konolige [15], Nonnengart [23], and Baldoni [4] also used modal logics
for the puzzle. Konolige [15] focused on limited reasoning, Nonnengart [23] used
semi-functional translation for modal logic programming, and Baldoni [4] used
a prefixed tableau system. Both McCarthy [17] and Nonnengart [23] used some
feature of mutual belief, but they did not define it purely. Baldoni [4] adopted
too strong versions of axioms 4 and 5, which are not suitable for the puzzle. As
other approaches for the wise men puzzle, Elgot-Drapkin [9] used step-logics,
while Cimatti and Serafini [6], Attardi and Simi [2] studied reasoning in belief-



contexts. Our formalization of the wise men puzzle given below uses KD4Ig5a-
MProlog. It is more elegant than the above-mentioned formalizations, as it uses
a modal logic with a clear semantics of common belief in a direct way.

As reported in [21], we have designed and implemented a modal logic
programming system, also called MProlog. In that system, SLD-resolution
calculi for MProlog can be specified according to the theoretical framework
given in [22]. An instantiation of that framework for KD4Ig5a is presented
in the next section. Its implementation (of SLD-resolution) is denoted by
ccKD4Ig5a. In that implementation, bel denotes belief and pos denotes possi-
bility, and modalities are represented by lists, e.g. 2i〈X〉j3kq(a) is represented
by [bel(I), pos(J,X), pos(K)] : q(a). The implemented calculus requires defini-
tions of predicates singleton group/1, subgroup/2, and union group/3. Denote
the wise men by a, b, c, and the possible groups by gAB, gAC, gBC, gABC,
where, e.g., gABC = {a, b, c}. Thus, [bel(gABC)] : ϕ means that ϕ is a common
belief of the group {a, b, c}. Define the mentioned required predicates in the usual
way. The three wise men problem can be formalized by the following program:

:- calculus ccKD4Ig5a.

% If Y sits behinds X then X’s card is white if Y considers this as possible.
[bel(gABC)]: (white(X) :-

member(X, [a,b,c]), member(Y, [a,b,c]), X @< Y, [pos(Y)]:white(X)).

% The following formula is “dual” to the above formula.
[bel(gABC)]: ([bel(Y)]:black(X) :-

member(X, [a,b,c]), member(Y, [a,b,c]), X @< Y, black(X)).

% At least one of the wise men has a white card.
[bel(gABC)]: (white(a) :- black(b), black(c)).
[bel(gABC)]: (white(b) :- black(c), black(a)).
[bel(gABC)]: (white(c) :- black(a), black(b)).

/* Each of B and C does not know the color of his own card. In particular, each
of the men considers that it is possible that his own card is black. */
[bel(gABC),pos(b)]:black(b).
[bel(gABC),pos(c)]:black(c).

The question is whether A believes that his card is white. It is passed to the
interpreter as mcall([bel(a)] : white(a)) and solved in less than 1 second2 using
certain option settings.

The above program uses the syntax of the implemented system. We give
below a version using the purely logical formalism of MProlog. For clarity, instead
of numeric indices we use a, b, c, ab, ac, bc, abc with the meaning that g(a) = {a},
g(b) = {b}, g(c) = {c}, . . . , and g(abc) = {a, b, c}. Let Pwise men be the following
program:

ϕ1 = 2abc (white(a)← 3b white(a))
ϕ2 = 2abc (white(a)← 3c white(a))

2 on TravelMate 230X, 1.7GHz-M



ϕ3 = 2abc (white(b)← 3c white(b))
ϕ4 = 2abc (2b black(a)← black(a))
ϕ5 = 2abc (2c black(a)← black(a))
ϕ6 = 2abc (2c black(b)← black(b))
ϕ7 = 2abc (white(a)← black(b), black(c))
ϕ8 = 2abc (white(b)← black(c), black(a))
ϕ9 = 2abc (white(c)← black(a), black(b))
ϕ10 = 2abc3b black(b)
ϕ11 = 2abc3c black(c)

The goal is ← 2awhite(a). We will continue this example in Section 4.5.
For a formalization of the puzzle with n wise men, see [22].

4 Semantics of KD4Ig5a-MProlog Programs

In this section, we present the least model semantics, the fixpoint semantics and
an SLD-resolution calculus for KD4Ig5a-MProlog programs. For abbreviation,
from now on we use L to denote KD4Ig5a.

4.1 Labeled Modal Operators

When applying the direct consequence operator TL,P for an MProlog program
P in L, if we obtain an “atom” of the form 43iE, then to simplify the task we
label the modal operator 3i. Labeling allows us to address the chosen world(s)
in which this particular E must hold. A natural way is to label 3i by E to obtain
〈E〉i. On the other hand, when dealing with SLD-derivation, we cannot change
a goal ← 3i(A ∧ B) to ← 3iA,3iB. But if we label the operator 3i, let’s say
by X, then we can safely change ← 〈X〉i(A ∧B) to ← 〈X〉iA, 〈X〉iB.

We will use the following notations:

– > : the truth symbol, with the usual semantics3;
– E, F : classical atoms (which may contain variables) or >;
– X, Y , Z : variables for classical atoms or >, called atom variables;
– 〈E〉i, 〈X〉i : 3i labeled by E or X;
– ∇ : 2i, 3i, 〈E〉i, or 〈X〉i, called a modal operator;
– 4 : a (possibly empty) sequence of modal operators, called a modality;
– � : a universal modality;
– A, B : formulas of the form E or ∇E, called simple atoms;
– α, β : formulas of the form 4E, called atoms;
– ϕ, ψ : (labeled) formulas (i.e. formulas that may contain 〈E〉i and 〈X〉i).

We use subscripts beside ∇ to indicate modal indexes in the same way as for
2 and 3. To distinguish a number of modal operators we use superscripts of the
form (i), e.g. 2(1), 2(2), ∇(i), ∇(i′).

3 i.e. it is always true that M, V, w � >



A ground formula is a formula with no variables and no atom variables. A
modal operator is said to be ground if it is 2i, 3i, or 〈E〉i with E being >
or a ground classical atom. A ground modality is a modality that contains only
ground modal operators. A labeled modal operator is a modal operator of the
form 〈E〉i or 〈X〉i.

Denote EdgeLabels = {〈E〉i | E ∈ B ∪ {>} and 1 ≤ i ≤ m}, where B is
the Herbrand base (i.e. the set of all ground classical atoms). The semantics
of 〈E〉i ∈ EdgeLabels is specified as follows. Let M = 〈D,W, τ,R1, . . . , Rm, π〉
be a Kripke model. A 3-realization function on M is a partial function σ :
W × EdgeLabels → W such that if σ(w, 〈E〉i) = u, then Ri(w, u) holds and
M,u � E. Given a 3-realization function σ, a world w ∈ W , and a ground
formula ϕ, the satisfaction relation M,σ,w � ϕ is defined in the usual way,
except that M,σ,w � 〈E〉iψ iff σ(w, 〈E〉i) is defined and M,σ, σ(w, 〈E〉i) � ψ.
We write M,σ � ϕ to denote that M,σ, τ � ϕ. For a set I of ground atoms, we
write M,σ � I to denote that M,σ � α for all α ∈ I; we write M � I and call
M a model of I if M,σ � I for some σ.

4.2 Model Generators

We define that a modality∇(1)
i1
. . .∇(k)

ik
is in the L-normal form if for all 1 ≤ j < k

if g(ij) is a singleton then ij 6= ij+1. (Note that if g(i) is a singleton then
∇i∇′

iϕ ≡ ∇′
iϕ is KD4Ig5a-valid.) A modality is in L-normal labeled form if it

is in L-normal form and does not contain modal operators of the form 3i or
〈>〉i. An atom is in L-normal (labeled) form if it is of the form 4E with 4 in
L-normal (labeled) form. An atom is in almost L-normal labeled form if it is of
the form 4A with 4 in L-normal labeled form.

A model generator is a set of ground atoms not containing 3i, 〈>〉i, >. An
L-normal model generator is a model generator consisting of atoms in L-normal
labeled form.

We will define the standard L-model of an L-normal model generator I so
that it is a least L-model of I (where a model M is less than or equal to a model
M ′ if for every positive ground formula ϕ without labeled operators, if M � ϕ
then M ′ � ϕ). In the construction we will use the operator ExtL defined below.

A forward rule is a schema of the form α → β, while a backward rule is a
schema of the form α ← β. A rule can be accompanied with some conditions
specifying when the rule can be applied.

The operator ExtL is specified by the corresponding forward rules given in
Table 1. Given an L-normal model generator I, ExtL(I) is the least extension
of I that contains all ground atoms in L-normal labeled form that are derivable
from some atom of I using the rules specifying ExtL. Note that ExtL(I) is an
L-normal model generator if so is I.

Denote SerialL = {�〈>〉i> | 1 ≤ i ≤ m and �〈>〉i is in L-normal form}.
Let I be an L-normal model generator. The standard L-model of I is con-

structed by building an L-model for ExtL(I) ∪ SerialL according to the se-
mantics of ground labeled modal operators, and formally is defined as fol-
lows. Let W ′ = EdgeLabels∗ (i.e. the set of finite sequences of elements of



L = KD4Ig5a, L-MProlog

�L is defined in page 10.
The L-normal form of modalities is defined in page 8.

Rules specifying operators ExtL, SatL, NFL, rNFL, rSatL:
(Both sides of each rule are in almost L-normal labeled form.)

ExtL 42iα→42jα if g(i) ⊃ g(j) (1)
42iα→42i2iα (2)

SatL the rules specifying ExtL plus
4〈F 〉iE →42i3iE if g(i) is a singleton (3)
4∇∇′E →43iE if 3i �L ∇ and 3i �L ∇′ (4)

NFL 4∇i∇′
iE →4∇′

iE if g(i) is a singleton and
∇′

i is of the form 2i or 〈E〉i (5)

rNFL 4∇iE ←4〈X〉i∇iE if g(i) is a singleton,
∇i is of the form 2i or 〈E〉i, and X is a fresh atom variable (6)

rSatL 43iE ←4〈X〉iE for X being a fresh atom variable (7)
4∇iα←42jα if g(i) ⊆ g(j) (8)
43iE ←43jE if g(i) ⊃ g(j) (9)
42i2iα←42iα (10)
4∇i3iE ←43iE if g(i) is a singleton (11)
43iE ←4〈X〉j3iE if g(i) ⊇ g(j) and

X is a fresh atom variable (12)

Table 1. A schema for semantics of KD4Ig5a-MProlog

{〈E〉i | E ∈ B ∪ {>} and 1 ≤ i ≤ m}), τ = ε, H(τ) = ExtL(I) ∪ SerialL. Let
R′

i ⊆W ′ ×W ′ and H(u), for u ∈W ′, u 6= τ , be the least sets such that:

– if 〈E〉iα ∈ H(w), then R′
i(w,w〈E〉i) holds and {E,α} ⊆ H(w〈E〉i);

– if 2iα ∈ H(w) and R′
i(w,w〈E〉i) holds, then α ∈ H(w〈E〉i).

Let Ri, for 1 ≤ i ≤ m, be the least4 extension of R′
i such that {Ri | 1 ≤ i ≤ m}

satisfies all the L-frame restrictions except seriality (which is cared by SerialL).
Let W be W ′ without worlds not accessible directly nor indirectly from τ via
the accessibility relations Ri. We call the model graph 〈W, τ,R1, . . . , Rm,H〉
the standard L-model graph of I, and its corresponding model M the standard
L-model of I. {R′

i | 1 ≤ i ≤ m} is called the skeleton of M . By the standard 3-

4 the least extension exists due to the assumption that all L-frame restrictions not
concerning seriality are classical first-order Horn formulas



realization function on M we call the 3-realization function σ defined as follows:
if R′

i(w,w〈E〉i) holds then σ(w, 〈E〉i) = w〈E〉i, else σ(w, 〈E〉i) is undefined.
It can be shown that the standard L-model of an L-normal model generator

I is a least L-model of I.

4.3 Fixpoint Semantics

We now consider the direct consequence operator TL,P . Given an L-normal model
generator I, how can TL,P (I) be defined? Based on the axioms of L, I is first
extended to the L-saturation of I, denoted by SatL(I), which is a set of atoms.
Next, L-instances of program clauses of P are applied to the atoms of SatL(I).
This is done by the operator T0L,P . The set T0L,P (SatL(I)) is a model generator
but not necessary in L-normal form. Finally, the normalization operator NFL

converts T0L,P (SatL(I)) to an L-normal model generator. TL,P (I) is defined as
NFL(T0L,P (SatL(I))).

To compare modal operators we define �L to be the least reflexive and
transitive relation between modal operators such that 3i �L 〈E〉i �L 2i,
3i �L 〈X〉i �L 2i, and if g(i) ⊆ g(j) then 2i �L 2j and 3j �L 3i.

An atom ∇(1) . . .∇(n)α is called an L-instance of an atom ∇(1′) . . .∇(n′)α′

if there exists a substitution θ such that α = α′θ and ∇(i) �L ∇(i′)θ for all
1 ≤ i ≤ n (treating ∇(i′) as an expression). For example, if g(1) ⊆ g(2) then
2132E is an L-instance of 22〈F 〉1E.

A modality 4 is called an L-instance of 4′, and we also say that 4′ is equal
to or more general in L than4 (hereby we define a pre-order between modalities),
if 4E is an L-instance of 4′E for some ground classical atom E.

Let � and �′ be universal modalities in L-normal form. We say that � is an
L-context instance of �′ if �′ϕ→ �ϕ is L-valid (for every ϕ). (It can be shown
that the propositional version of the logic L is decidable. So, the problem of
checking whether a given universal modality is an L-context instance of another
one is also decidable.)

Let � and �′ be universal modalities in L-normal form, ϕ and ϕ′ be program
clauses with empty modal context. We say that �ϕ is an L-instance of (a program
clause) �′ϕ′ if � is an L-context instance of �′ and there exists a substitution
θ such that ϕ = ϕ′θ.

For example, if g(1) ⊆ g(2) then 2221 is an L-context instance of 22 and
2221(p(a)← q(a)) is an L-instance of 22(p(x)← q(x)).

We now give definitions concerning SatL, T0L,P , and NFL.
The saturation operator SatL is specified by the corresponding forward

rules given in Table 1. Given an L-normal model generator I, SatL(I) is the
least extension of I that contains all ground atoms in almost L-normal la-
beled form that are derivable from some atom in I using the rules specifying
SatL. For example, if g(1) is a singleton and g(2) is not, then 22222131p(a) ∈
SatL({22〈q(b)〉1 p(a)}).

When computing the least fixpoint of a modal logic program, whenever an
atom of the form 43iE is introduced, we “fix” the 3 by replacing the atom by



4〈E〉iE. This leads to the following definition. The forward labeled form of an
atom α is the atom α′ such that if α is of the form 43iE then α′ = 4〈E〉iE,
else α′ = α. For example, the forward labeled form of 31s(a) is 〈s(a)〉1s(a).

Let P be an L-MProlog program. The operator T0L,P is defined as follows:
for a set I of ground atoms in almost L-normal labeled form, T0L,P (I) is the
least (w.r.t. ⊆) model generator such that if �(A ← B1, . . . , Bn) is a ground
L-instance of some program clause of P and 4 is a maximally general5 ground
modality in L-normal labeled form such that 4 is an L-instance of � and 4Bi is
an L-instance of some atom of I (for every 1 ≤ i ≤ n), then the forward labeled
form of 4A belongs to T0L,P (I).

For example, if g(1) ⊆ g(2) and P contains the clause 22(31p(x) ←
q(x), r(x), 21s(x), 32t(x)) and I = {〈q(a)〉1q(a), 〈q(a)〉1r(a), 2222s(a),
22〈t(a)〉1t(a)}, then 〈q(a)〉1〈p(a)〉1p(a) ∈ T0L,P (I).

The normalization operator NFL is specified by the corresponding forward
rules given in Table 1. Given a model generator I, NFL(I) is the set of all
ground atoms in L-normal labeled form that are derivable from some atom
of I using the rules specifying NFL. For example, if g(1) is a singleton then
NFL({〈q(a)〉1〈p(a)〉1p(a)}) = {〈p(a)〉1p(a)}.

Define TL,P (I) = NFL(T0L,P (SatL(I))). By definition, the operators SatL,
T0L,P , and NFL are all increasingly monotonic and compact. Hence the operator
TL,P is monotonic and continuous. By the Kleene theorem, it follows that TL,P

has the least fixpoint TL,P ↑ω =
⋃ω

n=0 TL,P ↑n, where TL,P ↑0 = ∅ and TL,P ↑n
= TL,P (TL,P ↑(n− 1)) for n > 0. Denote the least fixpoint TL,P ↑ω by IL,P and
the standard L-model of IL,P by ML,P .

It can be shown that for an L-MProlog program P , ML,P is a least L-model
of P . See also Lemma 1 given in Section 5.

4.4 SLD-Resolution

The main work in developing an SLD-resolution calculus for L-MProlog is to
specify a reverse analogue of the operator TL,P . The operator TL,P is a com-
position of SatL, T0L,P , and NFL. So, we have to investigate reversion of these
operators.

A goal is a clause of the form ← α1, . . . , αk, where each αi is an atom.
The following definition concerns reversion of the operator T0L,P .
Let G = ← α1, . . . , αi, . . . , αk be a goal and ϕ = �(A ← B1, . . . , Bn) a

program clause. Then G′ is derived from G and ϕ in L using mgu θ, and called
an L-resolvent of G and ϕ, if the following conditions hold:

– αi = 4′A′, with 4′ in L-normal labeled form, is called the selected atom,
and A′ is called the selected head atom;

– 4′ is an L-instance of a universal modality �′ and �′(A ← B1, . . . , Bn) is
an L-instance of the program clause ϕ;

– θ is an mgu of A′ and the forward labeled form of A;

5 w.r.t. the pre-order between modalities described earlier for L



– G′ is the goal ← (α1, . . . , αi−1,4′B1, . . . ,4′Bn, αi+1, . . . , αk)θ.

For example, if g(1) ⊆ g(2) then ← 2132q(x),21r(x) is an L-resolvent of
← 21p(x) and 22(p(x)← 32q(x), r(x)) (here, � = 22 and 4′ = �′ = 21).

As a reverse analogue of the operator SatL, we provide the operator rSatL,
which is specified by the corresponding backward rules given in Table 1. We say
that β = rSatL(α) using an rSatL rule α′ ← β′ if α← β is of the form α′ ← β′.
We write β = rSatL(α) to denote that “β = rSatL(α) using some rSatL rule”.

As a reverse analogue of the operator NFL, we provide the operator rNFL,
which is specified by the corresponding backward rules given in Table 1. We
say that β =θ rNFL(α) using an rNFL rule α′ ← β′ if θ is an mgu such
that αθ ← β is of the form α′ ← β′. We write β =θ rNFL(α) to denote that
“β =θ rNFL(α) using some rNFL rule”. For example, if g(1) is a singleton then
we have 〈Y 〉1〈E〉1E =θ rNFL(〈X〉1E) with θ = {X/E} and Y being a fresh
atom variable.

Let G = ← α1, . . . , αi, . . . , αk be a goal. If α′i = rSatL(αi) using an rSatL
rule ϕ, then G′ = ← α1, . . . , αi−1, α

′
i, αi+1, . . . , αk is derived from G and ϕ, and

we call G′ an (L-)resolvent of G and ϕ, and αi the selected atom of G.
Similarly,G′ is derived fromG and an rNFL rule ϕ using an mgu θ, and called

an (L-)resolvent of G and ϕ, if αi is called the selected atom, α′i =θ rNFL(αi)
using ϕ, and G′ = ← α1θ, . . . , αi−1θ, α

′
i, αi+1θ, . . . , αkθ.

For example, resolving ← 2121p(x) with the rule 42i2iα← 42iα results
in ← 21p(x), since 4 is instantiated to the empty modality, i is instantiated
to 1, and α is instantiated to p(x).

Observe that rSatL rules and rNFL rules are similar to program clauses and
the way of applying them is similar to the way of applying classical program
clauses, except that we do not need mgu’s for rSatL rules.

We now define SLD-derivation and SLD-refutation.
Let P be an L-MProlog program and G a goal. An SLD-derivation from

P ∪ {G} in L consists of a (finite or infinite) sequence G0 = G,G1, . . . of goals,
a sequence ϕ1, ϕ2, . . . of variants of program clauses of P , rSatL rules, or rNFL

rules, and a sequence θ1, θ2, . . . of mgu’s such that if ϕi is a variant of a program
clause or an rNFL rule then Gi is derived from Gi−1 and ϕi in L using θi, else
θi = ε (the empty substitution) and Gi is derived from Gi−1 and (the rSatL
rule variant) ϕi. Each ϕi is called an input clause/rule of the derivation.

We assume standardizing variables apart as usual (see [16]).
An SLD-refutation of P ∪ {G} in L is a finite SLD-derivation from P ∪ {G}

in L with the empty clause as the last goal in the derivation.
Let P be an L-MProlog program and G a goal. A computed answer θ in L

of P ∪ {G} is the substitution obtained by restricting the composition θ1 . . . θn

to the variables of G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-
refutation of P ∪ {G} in L.

4.5 Example

We give here an SLD-refutation of Pwise men ∪ {← 2awhite(a)} in KD4Ig5a,
where Pwise men is the KD4Ig5a-MProlog program given in Section 3.



Goals Input clauses/rules MGUs
← 2a white(a)
← 2a3b white(a) ϕ1

← 2a〈X2〉b white(a) (7)
← 2a〈X2〉b3c white(a) ϕ2

← 2a〈X2〉b〈X4〉c white(a) (7)
← 2a〈X2〉b〈X4〉c black(b),2a〈X2〉b〈X4〉c black(c) ϕ7

← 2a〈X2〉b black(b),2a〈X2〉b〈X4〉c black(c) ϕ6

← 2a〈black(b)〉b〈X4〉c black(c) ϕ10 {X2/black(b)}
� ϕ11 {X4/black(c)}

5 Soundness and Completeness

In this section, we prove soundness and completeness of the SLD-resolution
calculus given for KD4Ig5a-MProlog, which is stated as follows.

Theorem 1. Let P be an KD4Ig5a-MProlog program and G an KD4Ig5a-
MProlog goal. Then every computed answer in KD4Ig5a of P ∪ {G} is a cor-
rect answer in KD4Ig5a of P ∪ {G}. Conversely, for every correct answer θ in
KD4Ig5a of P ∪{G}, there exists a computed answer γ in KD4Ig5a of P ∪{G}
which is more general than θ (i.e. θ = γδ for some substitution δ).

In [22], we presented a general framework for developing fixpoint semantics,
the least model semantics, and SLD-resolution calculi for logic programs in mul-
timodal logics, and proved that under certain expected properties of a concrete
instantiation of the framework for a specific multimodal logic, the SLD-resolution
calculus is sound and complete. The semantics of KD4Ig5a-MProlog presented
in the previous section and summarized in Table 1 is based on and compatible
with the framework given in [22].

By the results of [22], to prove soundness and completeness of SLD-resolution
of KD4Ig5a-MProlog, we can prove Expected Lemmas 4 – 10 of [22] (w.r.t. the
schema given in Table 1). The Expected Lemma 6 is trivial, and the Expected
Lemmas 7 – 10, which concern properties of the operators SatL, NFL, rSatL,
and rNFL, can be verified in a straightforward way. The remaining Expected
Lemmas 4 and 5 are renumbered respectively as Lemmas 1 and 2 given below.

A model generator I is called an L-model generator of P if TL,P (I) ⊆ I.

Lemma 1. Let P be an L-MProlog program and I an L-model generator of P .
Then the standard L-model of I is an L-model of P .

Lemma 2. Let I be an L-normal model generator, M the standard L-model
of I, and α a ground L-MProlog goal atom. Suppose that M � α. Then α is an
L-instance of some atom of SatL(I).

To prove these lemmas we need Lemmas 3 and 4 given below.
If a modality 4 is obtainable from 4′ by replacing some (possibly zero) ∇i

by 2i then we call 4 a 2-lifting form of 4′. If 4 is a 2-lifting form of 4′ then



we call an atom 4α a 2-lifting form of 4′α. For example, 21〈p(a)〉122q(b) is a
2-lifting form of 〈X〉1〈p(a)〉132q(b).

Lemma 3. Let I be an L-normal model generator and M =
〈W, τ,R1, . . . , Rm,H〉 the standard L-model graph of I. Let w = 〈E1〉i1 . . . 〈Ek〉ik

be a world of M and 4 = w be a modality. Then for α not containing >,
α ∈ H(w) iff there exists a 2-lifting form 4′ of 4 such that 4′α ∈ ExtL(I).

This lemma can be easily proved by induction on the length of 4.
The following lemma is labeled Expected Lemma 2 in [22]. It states that the

standard L-model of I is really an L-model of I.

Lemma 4. Let I be an L-normal model generator, M the standard L-model of
I, and σ the standard 3-realization function on M . Then M is an L-model and
M,σ � I.

Proof. By the definition, M is an L-model. Let {R′
i | 1 ≤ i ≤ m} be the skeleton

of M . We prove by induction on the length of α that for any w ∈W , if α ∈ H(w)
then M,σ,w � α. The cases when α is a classical atom or α = 〈E〉iβ are trivial.
Consider the remaining case when α = 2iβ. Let u be a world such that Ri(w, u)
holds. Because ExtL(I) contains only atoms in L-normal form and 2iβ ∈ H(w),
there does not exist v such that R′

i(v, w) holds. Consequently, since Ri(w, u)
holds, there exist worlds w0 = w, w1, . . . , wh−1, wh = u and indices j1, . . . , jh
with h ≥ 1 such that R′

j1
(w0, w1), . . . , R′

jh
(wh−1, wh), and g(k) ⊆ g(i) for all

k ∈ {j1, . . . , jh}. Since 2iβ ∈ H(w), by Lemma 3, there exists a 2-lifting form
4′ of 4 = w such that 4′2iβ ∈ ExtL(I). By the rules specifying ExtL, it
follows that 4′2j1 . . .2jh

β ∈ ExtL(I). Hence, by Lemma 3, β ∈ H(u). By the
inductive assumption, M,σ, u � β. Hence M,σ,w � 2iβ.

Proof of Lemma 1 Let M be the standard L-model of I and σ the standard
3-realization function on M . By the definition of L-instances of program clauses
and the construction of M , it is sufficient to prove that for any ground L-instance
�(A ← B1, . . . , Bn) of some program clause of P , for any w ∈ W being an
L-instance of �, M,w � (A ← B1, . . . , Bn). Suppose that M,w � Bi for all
1 ≤ i ≤ n. We show that M,w � A.

Let 4 = w = 〈E1〉i1 . . . 〈Ek〉ik
. We first show that for any ground simple

atom B of the form E, 2iE, or 3iE, if M,w � B then 4B is an L-instance of
some atom from SatL(I). Suppose that M,w � B. If k ≥ 1 and i = ik and g(i)
is a singleton, then let v = 〈E1〉i1 . . . 〈Ek−1〉ik−1 , else let v = w.

If B = E, then by Lemma 3, some 2-lifting form of 4B belongs to ExtL(I),
and hence 4B is an L-instance of some atom from SatL(I).

Now suppose that B = 2iE. Let u = v〈>〉i and 4′ = v2i. We have Ri(w, u),
and hence M,u � E. By Lemma 3, it follows that some 2-lifting form of 4′E
belongs to ExtL(I). Hence, 4B is an L-instance of some atom from SatL(I).

Next, suppose that B = 3iE. Consider the case w 6= v (i.e. i = ik and g(i) is
a singleton). Since M,w � B, there exists F such that v〈F 〉i is a world of M and
M,v〈F 〉i � E. Let4′ = v〈F 〉i. By Lemma 3, some 2-lifting form of4′E belongs



to ExtL(I). Hence, by the rules (2) and (3) of SatL,4B is an L-instance of some
atom from SatL(I). Now consider the case w = v (i.e. k = 0 or i 6= ik or g(i)
is not a singleton). Since M,w � 3iE, there exists u = w〈F1〉j1 . . . 〈Fh〉jh

such
that M,u � E, h ≥ 1, and g(l) ⊆ g(i) for all l ∈ {j1, . . . , jh}. By Lemma 3, some
2-lifting form of w〈F1〉j1 . . . 〈Fh〉jh

E belongs to ExtL(I). It follows that some
2-lifting form of 4〈F1〉j1 . . . 〈Fh〉jh

E belongs to SatL(I). By the rules of SatL,
some 2-lifting form of 43iE belongs to SatL(I). Hence 4B is an L-instance of
some atom from SatL(I).

Since M,w � Bi for 1 ≤ i ≤ n, it follows that 4Bi is an L-instance of
some atom from SatL(I). Consequently, 4A is an L-instance of some atom α
from T0L,P (SatL(I)). Let α′ be the L-normal form of α, i.e. NFL({α}) = {α′}.
We have α′ ∈ TL,P (I) ⊆ I. By Lemma 4, M,σ � α′. If α′ = α then we can
derive from M,σ � α′ that M,w � A. Suppose that α′ 6= α. Thus, α is of the
form 4′′∇i∇′

iE, where 4′′∇i = 4, g(i) is a singleton, and ∇′
i is 2i or 〈E〉i. If

∇′
i = 〈E〉i then A = 3iE. We have that α′ = 4′′∇′

iE. Since M,σ � α′ and g(i)
is a singleton, it follows that M,σ � 4′′2iA. Hence M,w � A. This completes
the proof.

Proof of Lemma 2 Let 〈W, τ,R1, . . . , Rm,H〉 be the standard L-model graph
of I, � = 2i1 . . .2ik

be a modality, and w = 〈>〉i1 . . . 〈>〉ik
. Suppose that α

is of the form �E. Since M � α, we have M,w � E. Hence, by Lemma 3,
�E ∈ ExtL(I), and we also have �E ∈ SatL(I). Now suppose that α is of
the form �3iE with the property that if g(i) is a singleton then i 6= ik. Since
M � α, we have M,w � 3iE. Hence there exists u = w〈F1〉j1 . . . 〈Fh〉jh

such
that E ∈ H(u), h ≥ 1, and g(l) ⊆ g(i) for all l ∈ {j1, . . . , jh}. By Lemma 3, some
2-lifting form of w〈F1〉j1 . . . 〈Fh〉jh

E belongs to ExtL(I). It follows that some
2-lifting form of �〈F1〉j1 . . . 〈Fh〉jh

E belongs to ExtL(I) and SatL(I). Hence
�3iE is an L-instance of some atom from SatL(I).

We have proved Lemmas 1 and 2, which completes the proof of Theorem 1.

6 Conclusions

Our contributions in this paper are: the schema for semantics of KD4Ig5a-
MProlog given in Table 1, proofs of the soundness and completeness of SLD-
resolution for KD4Ig5a-MProlog, and a formalization of the wise men puzzle
in the purely logical formalism of KD4Ig5a-MProlog together with its SLD-
refutation.

In this text, we recalled a large number of definitions and constructions from
[22] (which in turn is an extension of [19]) in order to make the paper self-
contained and understandable. This does not reduce the originality of the above-
mentioned contributions.

The SLD-refutation given in Section 4.5 for the wise men puzzle does not
uses rules or properties involving with axiom (5a). Consequently, the puzzle can
be solved in the logic KD4Ig = Km +(D)+(4)+(Ig). The choice of KD4Ig5a is
justified as one of possible multimodal logics of belief and common/mutual belief



that can be used to formalize the wise men puzzle. Our framework for modal
logic programming [22] is applicable for a wide class of multimodal logics and it
can be extended for other Kripke model semantics (e.g. with varying domain or
non-rigid terms).

This paper considers only one of different aspects of multi-agent systems. In
particular, we did not consider temporal dimension, actions, and events. Thus
the current version of MProlog is not yet an agent programming language like
AgentSpeak(L) [25], 3APL [13], and KARO [18]. To deal with the mentioned
aspects, possible solutions are to adopt CTL like the BDI-architecture [26], (con-
current) dynamic logic like the KARO system [18], or discrete linear temporal
logic. Extending MProlog with dynamic logic or discrete linear temporal logic is
possible, because such logics can be treated as modal logics. However, this is still
not sufficient for practical multi-agent systems. There remain a lot of problems
to be solved. In our opinion, multi-agent planning deserves for more attention.
Also, perhaps we should use rewards and penalties for cooperative and com-
petitive6 multi-agent systems to deal with negotiation and cooperation. But in
that case, it seems not easy to adopt logics for specification and verification of
multi-agent systems.

In summary, this paper is on reasoning about common/mutual belief (which
was also considered in the paper [18] on KARO, but neglected in [26, 25, 13]). It
shows that the wise men puzzle can be nicely formalized in a multimodal logic of
belief using modal logic programming. Our system is goal-driven and we focused
on theoretical aspects like soundness and completeness.

References

1. H. Aldewereld, W. van der Hoek, and J.-J.Ch. Meyer. Rational teams: Logical
aspects of multi-agent systems. Fundamenta Informaticae, 63(2–3):159–183, 2004.

2. G. Attardi and M. Simi. Proofs in context. In J. Doyle, E. Sandewall, and
P. Torasso, editors, KR’94: Principles of Knowledge Representation and Reasoning,
pages 16–26, San Francisco, 1994. Morgan Kaufmann.

3. Ph. Balbiani, L. Fariñas del Cerro, and A. Herzig. Declarative semantics for modal
logic programs. In Proceedings of the 1988 International Conference on Fifth Gen-
eration Computer Systems, pages 507–514. ICOT, 1988.

4. M. Baldoni. Normal multimodal logics with interaction axioms. In D. Basin,
M. D’Agostino, D.M. Gabbay, and L. Viganò, editors, Labelled Deduction, pages
33–57. Kluwer Academic Publishers, 2000.

5. M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic program-
ming. In Joint International Conference and Symposium on Logic Programming,
pages 52–66. MIT Press, 1996.

6. A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The ap-
proach and a case study. In M. Wooldridge and N.R. Jennings, editors, Proceedings
of ECAI-94, LNCS 890, pages 71–85. Springer, 1995.

7. N. de Carvalho Ferreira, M. Fisher, and W. van der Hoek. Practical reasoning for
uncertain agents. In J.J. Alferes and J.A. Leite, editors, Proceedings of JELIA’2004,
volume 3229 of LNCS, pages 82–94. Springer-Verlag, 2004.

6 Environment can be treated as a competitive agent.



8. F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using
equational and order-sorted logic. Theoretical Comp. Science, 105:141–166, 1992.

9. J.J. Elgot-Drapkin. Step-logic and the three-wise-men problem. In AAAI, pages
412–417, 1991.

10. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

11. L. Fariñas del Cerro. Molog: A system that extends Prolog with modal logic. New
Generation Computing, 4:35–50, 1986.

12. M. Fisher and R. Owens. An introduction to executable modal and temporal
logics. In M. Fisher and R. Owens, editors, Executable Modal and Temporal Logics,
IJCAI’93 workshop, pages 1–20. Springer, 1995.

13. K.V. Hindriks, F.S. De Boer, W. van der Hoek, and J.-J.Ch. Meyer. Agent pro-
gramming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401,
1999.

14. M. Kacprzak, A. Lomuscio, and W. Penczek. Bounded versus unbounded model
checking for interpreted systems (invited talk at FAAMAS’03). In B. Dunin-Keplicz
and R. Verbrugge, editors, Proceedings of FAAMAS’03, pages 5–20, 2003.

15. K. Konolige. Belief and incompleteness. Technical Report 319, SRI Inter., 1984.
16. J.W. Lloyd. Foundations of Logic Programming, 2nd Ed. Springer-Verlag, 1987.
17. J. McCarthy. First order theories of individual concepts and propositions. Machine

Intelligence, 9:120–147, 1979.
18. J.-J.Ch. Meyer, F.S. de Boer, R.M. van Eijk, K.V. Hindriks, and W. van der Hoek.

On programming KARO agents. Logic Journal of the IGPL, 9(2), 2001.
19. L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic

programs. Fundamenta Informaticae, 55(1):63–100, 2003.
20. L.A. Nguyen. Multimodal logic programming and its applications to modal deduc-

tive databases. Manuscript (served as a technical report), available on Internet at
http://www.mimuw.edu.pl/~nguyen/papers.html, 2003.

21. L.A. Nguyen. The modal logic programming system MProlog. In J.J. Alferes
and J.A. Leite, editors, Proceedings of JELIA 2004, LNCS 3229, pages 266–278.
Springer, 2004.

22. L.A. Nguyen. The modal logic programming system MProlog: Theory, design, and
implementation. Available at http://www.mimuw.edu.pl/~nguyen/mprolog, 2005.

23. A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish,
D. Pearce, and L.M. Pereira, editors, Proceedings of JELIA’94, LNCS 838, pages
365–378. Springer, 1994.

24. M.A. Orgun and W. Ma. An overview of temporal and modal logic programming.
In D.M. Gabbay and H.J. Ohlbach, editors, Proc. First Int. Conf. on Temporal
Logic - LNAI 827, pages 445–479. Springer-Verlag, 1994.

25. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proceedings of the 7th European Workshop MAAMAW, volume 1038 of LNCS,
pages 42–55. Springer, 1996.

26. A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture.
In KR, pages 473–484, 1991.

27. R.A. Schmidt and D. Tishkovsky. Multi-agent logic of dynamic belief and knowl-
edge. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of
JELIA’2002, volume 2424 of LNAI, pages 38–49. Springer, 2002.

28. W. van der Hoek and J.-J. Meyer. Modalities for reasoning about knowledge and
uncertainties. In P. Doherty, editor, Partiality, Modality, and Nonmonotonicity.
CSLI Publications, 1996.


