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But never put a person to death on the testimony of only one
witness. There must always be at least two or three witnesses.

Deuteronomy 17:6 (New Living Translation)

Abstract. We present a framework for reasoning about trustworthiness,
with application to con�ict resolution and belief formation at various de-
grees of reliability. On the basis of an assignment of relative trustworthi-
ness to sets of information sources, a lattice of degrees of trustworthiness
is constructed; from this, a priority structure is derived and applied to
the problem of forming the right opinion in the presence of possibly con-
�icting information. Consolidated with an unquestioned knowledge base,
this provides an unambiguous account of what an agent should believe,
conditionally on which information sources are trusted. Applications in
multi-agent doxastic logic are sketched.

1 Introduction

To trust an information source, in the simplest, unconditional form, is to believe
every piece of information that the source provides. While providing a paradigm,
this notion of trust has limited application to realistic scenarios. In general, the
trust we have in our information sources, which may vary in kind from teachers
to newspapers to legal witnesses, is not unconditional: we believe what we are
told by a trusted source only as long as we don't possess knowledge to the
contrary. This simple observation motivates the approach to trust that we will
be discussing in this paper. Conditional trust in an information source is a default
attitude: To believe what you are told, unless you know better.

When looking for information, we often need to consider several sources.
Sources may vary widely with regard to their reliability, and a cautious default
approach then informs us to let the more trustworthy ones take priority over
those that are less trustworthy. Furthermore, we often need to consider more
than one source at a time. Notions of agreement or corroboration, as well as the
consolidation of information drawn from di�erent sources, are essential.

What we present here is a framework for reasoning about relative trustwor-
thiness, with sets of information sources as the basic trusted units. The main part
of the paper is structured as follows. Section 2 addresses properties of the trust
relation itself, making only informal reference to notions of information. Building
on a simple trustworthiness relation (2.1), rational trust attitudes are identi�ed



and ordered according to strength (2.2, 2.3), and ordered in a tree structure of
�fallbacks� (2.4). Section 3 employs this structure to provide an account of trust
in terms of default conditionals. Notions of information, as provided by individ-
ual sources as well as collections of sources, are de�ned in 3.1. The prioritized
default logic Æ> is brie�y presented in section 3.2. The defaults approach is
then made explicit in section 3.3, which presents a method for expressing trust
attitudes as formulae of Æ>.

For the presentation of the core theory, we assume that the information
provided by sources is expressed in propositional logic. However, the theory
is equally applicable if one wants to use a more, or less, complex language.
Looking forward, section 3.4 outlines how the analysis can be applied to multi-
agent doxastic logic, to enable the representation of doxastic agents with varying
degrees of trust that the beliefs of other agents are true.

The expression of trusting attitudes in terms of prioritized defaults provides
an answer to the following non-trivial question: Given that we possess a body of
antecedent knowledge, and are provided with information from a set of variously
trusted sources, what is it reasonable to believe?

This work builds on two main sources. For the theory of trustworthiness, the
most important is the work of John Cantwell [1, 2], in which the basic relation
of trustworthiness is de�ned in a way that is close to the one given here. For the
aspects that relate to default inference and belief, the prioritized belief logic Æ
[9, 10, 12], which is closely related to that of [7], has been the primary source of
reference.

We consider the following to be guiding principles for what follows.

Given a collection of sources, what all sources agree on is at least as
trustworthy as what only some agree on.

(1)

If some unit x is trusted, and y is at least as trustworthy as x, then
rationality demands that y should be trusted too.

(2)

Accept information from a trusted unit as true, unless it is inconsistent
with what you have already accepted.

(3)

2 A trustworthiness relation

2.1 The basic pre-order on information sources

Let S be a (possibly empty) �nite set of sources. The trustworthiness relation
E is a relation between subsets of S; we will often refer to these as source
units. A source unit is an entity that is capable of providing information, as
follows: A singleton unit {a} provides exactly what the single source a does.
A non-singleton unit provides only what follows from the contribution of every
member. Informally, think of a non-singleton source unit as making a �common
statement�, i.e., the strongest that its members all agree on.

Notation: Small Latin letters a, b, c denote sources, small variable letters
x, y, z range over source units, capital Latin letters A,B,C denote particular



sets of source units, and capital variable letters X,Y, Z range over arbitrary sets
of source units. We will sometimes have to collect sets of source units, for which
we shall use capital Greek letters Γ,∆.

We assume that the trustworthiness relation is re�exive and transitive (a
pre-order). Two source units x and y may be trustworthiness-equivalent, written
x ∼ y.

x ∼ y =def xE y and y E x (4)

We write xC y to express that y is strictly more trustworthy than x.

xC y =def xE y and not x ∼ y (5)

Source units that are unrelated by E will be called independent, denoted x o y.
Intuitively, we interpret independence as a consequence of lack of knowledge;
neither of xB y, xC y, and x ∼ y is known to obtain. If no two source units are
independent, we say E is connected.

We assume that every source, however it is combined with other sources,
makes a non-negative contribution of information. Together with (1), this implies
that enlargement of a source unit with new members may never yield a unit
that provides a stronger set of information. Hence, a unit will be at least as
trustworthy as every unit that it contains as a subset. This motivates taking the
following principle, which we will occasionally refer to as monotonicity, to be
valid.

xE x ∪ y . (6)

It follows that for each source unit x, the following hold.

xE S , (7)

∅E x . (8)

To see why (7) is valid, note that S only provides information which is com-
mon to, is agreed upon, by all the sources. At the other extreme, we stipulate
that the empty set is a limit case that always provides inconsistent information,
motivating (8).

In referring to particular source units in examples we will consistently simplify
notation by omitting brackets: aCbc is, e.g., shorthand for {a}C{b, c}. Likewise,
the set {{a}, {a, b}} will be denoted a, ab. Observe that the symbol a should,
depending on the context, either be taken as a reference to the source a or to
the singleton source set {a} or to the singleton source set collection {{a}}.

2.2 The poset of trust-equivalent source units

To have an attitude of trust, given some S, is to trust a (possibly empty) set
of source units. In the following, we will allow ourselves to talk about attitudes
as being the sets of source units themselves, and to say that a source unit is



�included� in an attitude of trust, meaning that that source unit is among those
trusted. The empty set represents the attitude of placing trust in none of the
sources.

Given a trust relation C, we can distinguish those trust attitudes that respect
the relation. The relevant principle is expressed in rule (2), that x may only be
trusted if every y D x is trusted as well. We will in this section identify the
permissible trust attitudes according to this principle.

We will use the following standard terminology. In a poset (S,≤) the ≤-
relation is re�exive, transitive and anti-symmetric. The poset has a unique cover
relation �, de�ned as x � y i� x < y and x ≤ z < y implies z = x. C ⊆ S is
an antichain if every two distinct elements in C are incomparable by ≤. Note
in particular that ∅ is an antichain. Every subset of S has ≤-minimal elements,
and the set of these elements is an antichain. ↑C denotes an up-set, de�ned as
{x | (∃y ∈ C)(y ≤ x)}. The set of antichains in a poset is isomorphic to the set
of up-sets under set inclusion.

If an attitude of trust includes a source set x, but not an equivalently trust-
worthy source set y, then the attitude is not permissible. This motivates a focus
on the equivalence classes of S modulo ∼. Where x ⊆ S,

[x] =def {y : x ∼ y} (9)

Let Ṡ be the set of all equivalence classes of S modulo ∼. We will say a set of
sources x is vacuous with regard to trustworthiness if x ∈ [∅]. In the extreme
case that every set of sources is a member of [∅], the trustworthiness relation
itself is said to be vacuous.

Where X and Y are in Ṡ, de�ne a relation Ċ of relative strength between
them as follows.

X Ċ Y =def (∃x ∈ X)(∃y ∈ Y )(xC y) (10)

Let X Ė Y designate X Ċ Y or X = Y and let X ȯY designate independence.

Lemma 1. (Ṡ, Ė ) is a poset in which [∅] is the unique minimum and [S] the
unique maximum. (Ṡ, Ė ) is a linear order i� (℘S,E) is connected.

Proof. Monotonicity entails the unique minimum and maximum. The other
properties follow easily from the construction of (Ṡ, Ė ).

Example 1. Assume that the set of sources S contains just a and b, and that
aCab, bCab, ∅Ca, and ∅Cb (i.e., the source units a, b, and ab are non-vacuous,
and ab is more trustworthy than both a and b). The following �gure shows Hasse
diagrams of the poset (Ṡ, Ė ), given 1. aC b, 2. a ∼ b, and 3. a o b.

1. ab

a

b

∅

2. ab

a, b

∅

3. ab

a
��

∅
???

b
??

���



Relation 1. requires information provided by a to take precedence over informa-
tion provided by b. Relation 2. emerges from taking a to precisely as reliable as
b: it is only rational to accept a's contribution given that b's is accepted as well
(in the event that a and b contradict each other, it is ruled out that either can be
trusted separately). Relation 3. re�ects a situation in which less is known about
the relative trustworthiness of a and b than in 1. and 2, i.e., neither is known to
be better or equivalent to the other. With this relation, trusting b but not a is
not irrational; so the range of admissible attitudes is wider. In particular, where
the information a provides is incompatible with what b provides, the relation
doesn't rule out making a choice of trusting just one of the two.1 Compared to
1. and 2., this relation o�ers more freedom, but less guidance.

The following example, which is developed further in later sections, applies
the theory to a reasonably realistic scenario.

Example 2 (Tra�c accident). A tra�c accident has occurred. We have been
assigned the task of �nding witnesses, assessing their relative trustworthiness,
gathering their statements on what came to pass, weighing the evidence accord-
ing to trustworthiness and �nally presenting an account of the accident according
to a reasonable standard (threshold) of trust.

~

a

c
b

Assume, for this example, that the criterion ac-
cording to which sources are deemed trustworthy
or not is their viewpoint relative to the incident,
and that we are provided with a drawing (right),
illustrating the accident ~ and the positions of
the witnesses. At the outset, we know that there
are three witnesses, a, b, and c, but nothing about their respective trustworthi-
ness. Making no prior assumptions, we start out with the weakest possible trust
relation (0. below).
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By applying information provided by the drawing, we are able to considerably
strengthen the trust relation. We will consider a sequence of three steps.

1 When the case arises that a and b contradict each other, a choice will implicitly
favour a revision of the trust relation to be like 1. or 2. If the subject opts to trust
a over b, 1. is favored; if neither, this favors 2.



1. Seeing that c was closer to where the accident took place than the others,
we take c to be more trustworthy than both: aC c and bC c.

2. Because a and b are farther apart than a and c, their viewpoints are likely to
be more divergent. Whatever can be observed from widely di�erent perspectives
is likely to hold true. Therefore, we will assume acC ab.

3. Because b and c are close together, we add bcC ac as well.
We choose to make no further additions to the relation. In particular, we

refrain from making a judgment whether a is more trustworthy than b, or vice
versa, or just as trustworthy as b: we consider a and b to be independent. This
means it will be consistent with the trust relation to make a choice between
which of a and b to trust. If they should happen to contradict each other, our
lack of knowledge as to which is more trustworthy then presents us with the
option to trust just one of the two.

Note that c is more trustworthy than b in 2. and 3., but that the relationship
is not preserved when combined with a (ac C ab holds). Indeed, the following
substitution principles are not valid; given z[y/x] = (z \ x) ∪ y,

If xC y and x ⊂ z, then z C z[y/x]
If x ∼ y and x ⊂ z, then z ∼ z[y/x] .

2.3 A lattice of trust levels

We know from Lemma 1 that (Ṡ, Ė ) is a poset. Given the poset it is straightfor-
ward to identify the permissible trust attitudes: a trust attitude is permissible if
it is an up-set in (Ṡ, Ė ). Technically, we will represent an attitude by its set of
minima, or equivalently, by an antichain in the partial order (Ṡ, Ė ). We de�ne
the set T of permissible trust attitudes as follows,

T = {∪Γ | Γ is an antichain in (Ṡ, Ė )}

We will use the symbol f to denote the attitude that no source unit is trusted,
∪∅.

There is a natural relation of strength between permissible trust attitudes.
Having a weak trust attitude means trusting only what many sources agree on,
or perhaps none; a strong attitude means trusting many sources, or perhaps all.
Let Γ and ∆ be antichains in (Ṡ, Ė ). Then we de�ne

∪Γ ≤ ∪∆ i� ↑∆ ⊆ ↑Γ.

By de�nition, f is ≤-maximal in T. This is natural, as the corresponding atti-
tude of trusting no source unit will always have a maximal degree of reliability.
Ordered by ≤, the members of T form a lattice in which lesser nodes represent
stronger trust attitudes. It is natural to talk about the permissible trust attitudes
as corresponding to a hierarchy of degrees of trust. We shall hence occasionally
refer to T as the set of trust levels.

In the lattice (T,≤) A < B intuitively means that B is a level of trustwor-
thiness that is genuinely greater than A. Let u denote meet and t denote join.



Then AtB is the weakest trust level that is at least as strong as both A and B;
if A and B are not comparable by ≤, then it is stronger. AuB is the strongest
trust level that is at least as weak as both A and B.

Example 3 (Lattices for example 2).

f0.

abc

ab
ttt

t

ab, ac

a
��

�

a, bc

??
?

a, b

a, b, c

JJJ

∅

a, c
JJJ

ab, ac, bc

JJJ

ttt

ac, b
ttt

b, c
JJJ

ttt

ab, c

JJJ

ab, bc

JJJ
J

b
JJJJ

tttt

ac
ttt

t

ac, bc

JJJ
J

ttt

c
??

?

��
�

bc
JJJ

J

ttt
t

ttt

f1.

abc

ab
ttt

t

ab, ac

ab, ac, bc

JJJ

c

a
���

�

a, b

??
?

∅

b
???

?

��
�

ab, bc

JJJ
J ac
ttt

t

ac, bc

JJJ
J

ttt

bc
JJJ

J

ttt
t

f2.

abc

ab
���

ac

ac, bc

??
?

c

a
���

�

a, b

??
?

∅

b
???

?

��
�

ab, bc
OOOOO

��

bc

???

f3.

abc

ab

ac

bc

c

a
���

�

a, b

??
?

∅

b
???

?

��
�

The lattice of trust levels makes explicit what the permissible trust attitudes
are and how they are related with regard to strength. This can form the basis
for choosing, in a given scenario, a threshold of trust: a level that is deemed
su�ciently trustworthy. Setting a threshold may also be described in terms of
risk. If A < B, then to choose A as the threshold of trust is to take a greater risk
with regard to trusting sources than if B is chosen. Determining a threshold of
trustworthiness amounts to �xing a �limit� of risk, to draw a line between what
is trusted, and not trusted, in the non-relative sense of the word. For example,
with a threshold at AtB, if A and B are comparable, risk is limited to what
follows from trusting the more trustworthy of the two; if incomparable, then
to the greatest degree of risk that represents comparably less risk than both A
and B. To say that AuB lies within the risk limit means that A and B are
both considered reliable (i.e., that all source units in A and B provide only true
information).

A threshold of trust can be conveniently speci�ed by reference to the source
units trusted. Observe that each member of Ṡ is a member of T. Therefore, any
expression using members of Ṡ (i.e., equivalence classes of source units), u and
t denotes a unique level of trust.

Example 4 (Threshold for example 3). Say that we adopt the attitude to �trust
all that ab and ac deliver, as long as it is con�rmed by bc� as a threshold. This
attitude is expressible as ([ab]u[ac])t[bc]. Given relations 0., 1., and 2., the atti-
tude amounts to trusting only what a, b, and c agree on, because (abu ac)t bc =
(ab, ac)t bc = abc. With the stronger relation 3., it denotes the level ab.



2.4 A tree of fallbacks for broken trust

The core of a default conception of relative trust in information sources is the
default rule (3) to accept what you are told, unless it is in con�ict with what
you already know We presently interpret this rule with respect to relative trust.
Let us consider a trusting subject that has only permissible trust attitudes. In
the non-relative sense of �trust�, f is always trusted, and a level X is trusted,
on condition that every Y ≥ X is also trusted, by default.

Now, if trusting at a levelX is inconsistent with trusting at a superior level Y ,
trust at X is broken; X is not trustable. This will obtain whenever information
provided at X is inconsistent with antecedent knowledge, or with information
accepted at a superior level. The signi�cance of of trusting at X should then be
identi�ed with trusting some superior, trustable level; call this the fallback of X.
The fallback, as the value of a blocked default, is the key notion that allows us
to view relative trust as a default attitude.

Let X be an element of T di�erent from f, and let Γ be the ≤-cover of X.
Given that Γ is singleton, we straightforwardly identify

⋃
Γ as the appropriate

fallback of X. Where not, note that by construction of the lattice, X is a level
composed of a set of simpler levels, the members of Γ . That trust is broken
at X means some of these levels are not trustable. In this case, the fallback
of X should be identi�ed as a level with greater trustworthiness than every Y
immediately superior to X. Let the fallback f(X) of X be de�ned as

f(X) = lub(Γ ) in (T,≤) .

The fallback function is unde�ned for f; otherwise every node has a unique
fallback. f, representing the trust level of antecedent knowledge, is always the
fallback of [S]. Note that every path from the lattice maximum f to a trust
level X must go through f(X), and that f(X) is the ≤-minimal node with this
property.

The fallback tree (T,≺) is de�ned as the weakest relation such that for all
X ∈ T, f(X) ≺ X. It is easy to show that the fallback tree is indeed a tree with
root f.

Example 5 (Fallback trees for example 3).
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3 Trust in terms of defaults

The aim of this section is to implement the default approach to the information
trust model based on a function I which assigns propositional content to each
source in S. The default interpretation of fallback trees is then encoded into the
logic Æ>. Encoding fallback trees in Æ> will allow us to give precise answers to
questions such as, �which trustworthiness levels support a belief in a proposition
φ?�, and �is φ entailed by the beliefs of a given degree of trustworthiness?�. Æ>
is a natural choice as representation language for default inferences. It allows
a simple representation of ordered supernormal defaults theories as well as a
natural extension to multi-agent languages.

The basic assignment of information to sources is a mapping from members of
S to expressions in a formal language. In section 3.1 we use the simple language
of propositional logic to this end. However, there is no intrinsic reason for using
this language to represent information, and one can easily conceive of using more
complex languages for this purpose. Section 3.4 explores possibilities for using
multi-agent langauges.

3.1 Information provided by sources

Basically the information interpretation of the trust model assigns formal ex-
pressions to each source in S. The assignment function I must then be extended
to source units (sets of sources) and trust attitudes (sets of source units). To
implement this we identify the corresponding operations of agreement and con-
solidation of information content. In propositional logic these operations will be
implemented simply by means of disjunctions and conjunctions.

Let us denote the informational content of a source a in S by Ia, which is a for-
mula of propositional logic. Intuitively, the information Ix provided by a source
unit is de�ned to be the strongest proposition that every member of the unit sup-
ports � the strongest that the members all agree on. If x = {a1, . . . , an}, ai ∈ S,
then Ix = Ia1 ∨ · · ·∨ Ian

. The value of I∅, on the common understanding of 0-ary
disjunctions, will be assumed to be the propositional falsity constant ⊥. The
empty set hence gives a contribution which is always unacceptable.

De�ne the consolidated informational contribution of x1, . . . , xn ⊆ S as IX =
Ix1 ∧ · · ·∧Ixn . That is, we de�ne the informational contribution of a set of source
units as the strongest consequence that would follow from taking each unit as a
source of evidence. Observe in particular that I[∅] will always be ⊥. By convention
If is >.

3.2 Intermezzo: The Logic Æ>

Æ> is an �Only knowing� logic, generalizing the pioneering system of Levesque [7]
with language constructs for the representation of various degrees of con�dence
for a doxastic subject.

The object language of Æ> extends the language of propositional logic by
the addition of modal operators: � (necessity) and modalities Bk (belief) and



Ck (co-belief) for each k in a �nite index set I. The index set represents the
distinct degrees of con�dence and comes along with a partial order which gives
the indices relative strength. bk ϕ is de�ned as ¬Bk ¬ϕ and denotes that ϕ is
compatible with belief at degree of con�dence k.

A formula ϕ is completely modalized if every occurrence of a propositional
letter occurs within the scope of a modal operator and purely Boolean if it
contains no occurrences of modal operators. The �all I know at k� expression
Ok ϕ abbreviates Bk ϕ∧Ck ¬ϕ, meaning that precisely ϕ is believed with degree
of con�dence k. A formula of the form

∧
k∈I Ok ϕk is called an OI-block. If each

ϕk is purely Boolean, the OI -block is said to be prime.
Æ> is a special instance of the system Æρ introduced in [8] and further

analyzed and motivated in [12]; the references contain in particular an axiomati-
zation, a formal semantics and proofs of soundness, completeness and the �nite
model property. A particularly strong property of Æ> is the Modal Reduction
Theorem: for each OI -block ϕI and for some m ≥ 0, there are prime OI -blocks
ψI

1 , . . . , ψ
I
m such that ` ϕI ≡ (ψI

1 ∨ · · · ∨ ψI
m).2

A prime OI -block determines the belief state of the agent in a unique and
transparent way; if such a formula is satis�able, it has essentially only one model.
A non-prime OI -block only implicitly de�nes the belief state and has in general
a number of di�erent models. The Modal Reduction Theorem relates an implicit
belief representation to an explicit representation by a provable equivalence. To
determine whether m > 0 in the statement of the theorem is Σp

2 -hard.
If there is only one degree of con�dence, Æ> is equivalent to Levesque's

system of only knowing, for which there is a direct correspondence between a
stable expansion in autoepistemic logic and a prime formula O ϕ. A prime OI -
block is a natural generalization of the notion of stable expansion to a hierarchical
collection of expansions.

3.3 Encoding the fallback tree as defaults in Æ>

We now describe how to use a fallback tree to extract information, both between
contributions of the sources, which may be more or less mutually compatible,
and between these contributions and a set of antecedently given information.

To facilitate the discussion let us say that a fallback tree is information
labelled if each node X in the tree is labelled with IX . The labels express the
information contribution attached to the trust level X.

We will assume that a knowledge base, denoted κ, is given with unconditional
trustworthiness. Informally, say that (precisely) κ, a formula of propositional
logic, is believed with full conviction. The notion of trustworthiness is directly
relevant to the notions of con�dence and belief, as is clear by the simple obser-
vation that information stemming from highly trustworthy sets of sources will
be considered reliable with a greater degree of con�dence than that which is

2 In the sequel ` denotes the provability relation of Æ> (which extends the provability
relation of classical logic).



provided by less trustworthy sources. Following the default interpretation for-
mulated in principle (3), we can de�ne a simple procedure which reveals what
information may reliably be said to be supported at each level of trustworthiness.
De�ne the following formula by induction over the fallback tree.

βf = κ

βX =

{
βf(X) ∧ IX if βf(X) ∧ IX is PL-consistent,

βf(X) otherwise.

Then βX denotes what a rational agent should believe at a degree of con�dence
corresponding to the trust attitude X.

The modal logic Æ> is suitable for the representation of fallback trees and
the associated default principle. In the encoding we use the set of trust levels T
as the index set which individuates modalities in the language of Æ>. Let (T,≺)
be the fallback tree and ≺∗ be the re�exive, transitive closure of ≺. For X ∈ T
we de�ne

δX = bX IX ⊃ IX .

Note that δX is equivalent to ¬ IX ⊃ BX ¬ IX , i.e., should ϕ be false, the subject
will believe that it is. We will refer formulae of this form as default conditionals
when they occur within a modal O-context, since the conditional then has the
force of formalizing the property corresponding to the statement �the proposition
IX holds by default�.

The default interpretation of the default structure is formalized by the fol-
lowing encoding:

JT,≺, κKf = Of κ

JT,≺, κKX = OX(κ ∧
∧

Y≺∗X
δY )

JT,≺, κK =
∧

X∈T
JT,≺, κKX

The encoding is structurally similar to the encoding of ordered default theories
into Æ> in [4].

Theorem 1. ` JT,≺, κK ≡
∧

X∈T OX βX .

Proof. The proof uses simple properties from the model theory of Æ>, cf. [12]. In
an Æ> model M all points agree on the truth value of every completely modal-
ized formula. We will hence use the notation M |= ϕ whenever a completely
modalized ϕ is satis�ed at some point in M . We use the following two facts in
the proof. Let M satisfy OX ϕ for an index X.

1. If M satis�es OX ψ, then ϕ ≡ ψ is true at every point in M .
2. If ϕ and ψ are purely Boolean, M satis�es bX ψ i� ϕ 6` ¬ψ.

We show, by induction on X, the more general result that for any Z ∈ T

`
∧

X≺∗Z
JT,≺, κKX ≡

∧
X≺∗Z

OX βX .



The base case is trivial. For the induction step, it is su�cient to show that
M |= JT,≺, κKX ≡ OX βX for any Æ>-model satisfying both JT,≺, κKf(X) and
Of(X) βf(X). By 1, every such model M satis�es

M |= (κ ∧
∧

Y≺∗f(X)
δY ) ≡ βf(X) .

Thus M |= JT,≺, κKX ≡ OX(βf(X) ∧ δX). It only remains to show

M |= OX(βf(X) ∧ (bX IX ⊃ IX)) ≡ OX βX .

But since M |= Of(X) βf(X), it follows directly from the de�nition of βX and 2
that M |= bX IX i� βf(X) 6` ¬ IX , and we are done. ut

The theorem shows that the encoding of a nodeX and its information content
can be reduced to the OT-block

∧
X∈T OX βX within the logic itself, where at

each node X in the tree the formula βX is the proposition that the rational agent
will entertain at this level of trust.

Example 6 (Example 5, with information). The witnesses a, b, and c are inter-
viewed for their accounts of the accident scenario. We assign content to propo-
sitional variables as follows: p = The green car was veering; q = There was a
cat in the road; r = The red car was veering; s = The red car was speeding.
The following �gure records the witnesses' statements (left), and the resulting
post-evaluation propositions at each trust level decorate the fallback tree (3.).3

a : q ∧ (r ∨ s)
b : p ∧ ¬q
c : p ∧ r

f : p ∨ r3.

abc : (p ∨ r) ∧ (q ∧ (r ∨ s) ∨ p ∧ (¬q ∨ r))

ab : (p ∨ r) ∧ (q ∧ (r ∨ s) ∨ p ∧ ¬q)

ac : (p ∨ r) ∧ (q ∧ s ∨ (q ∨ p) ∧ r)

bc : p ∧ r

c : p ∧ r

p ∧ (r ∧ q) : a

a, b : ⊥

∅ : ⊥

b : p ∧ r ∧ ¬q
���

� ???
?

Noteworthy features:

� a and b may not both be fully trusted, but choosing either is consistent.
� The proposition s, which �gures as a disjunct in a's account, is eliminated

from the node bc onwards.
3 Formulae computed using The Logics Workbench, http://www.lwb.unibe.ch/.



� For nodes a, b and ∅, the value ⊥ is displayed to emphasize their inconsis-
tency. These nodes will actually take values from the consistent fallback node
c, i.e., p ∧ r.

3.4 From information sources to doxastic agents

There is no intrinsic reason to use the language of propositional logic to represent
the information delivered by sources. This section addresses the use of multi-
modal languages for this purpose. The expressive power of such languages is
needed in cases where the sources deliver information about agents; typically,
about what the agents believe. To generalize the approach of section 3.3 we need
to extend the language of Æ> such that it extends the information representation
language.

The logic Æ> has been extended to a multi-modal language. An interesting
proof-theoretical property of this extension of Æ> is that it has a sequent cal-
culus formulation which admits constructive cut-elimination and hence cut-free
proofs; this is proved in [11] for a multi-agent language in which the beliefs of
each subject are represented relative to di�erent degrees of con�dence. A Kripke
semantics for the logic has been presented in [13].4

Let us assume that the modalites in the multi-agent language is de�ned by a
collection I0, . . . , Im of index sets, one for each agent. The indices in each index
set are partially ordered, while two indices in di�erent index sets are unrelated.

The notion of an OI -block transfers to the multimodal langage: An OIj
-block

is a formula
∧

k∈Ij
Ok ϕk. If each formula ϕk is Ij-objective, i.e. all occurrences

of a Ij-modality occurs within the scope of a modality which belongs to another
agent, the OIj

-block is prime. An OI -block can now be de�ned as a conjunction
of OIj

-blocks, one for each agent. Given these concepts the Modal Reduction
Theorem transfers to the multi-modal logic.

Let us �rst assume that the sources deliver information about the beliefs
of agents α1, . . . , αm without being agents themselves, i.e. they do not deliver
information about other sources, or about themselves, or about the observer
who collects the information. Assume also that the beliefs of these agents are
represented in the multi-modal system K45m, i.e. a sublanguage of multi-modal
Æ>, so that the I function now delivers K45m formulae.

The index sets for the multi-modal Æ>-representation are T, {α1}, . . . , {αm}.
The assumption that no αi are sources implies that we can use the same simple
functions for agreement and consolidation as introduced for propositional logic
in section 3.1. It is now straightforward to establish Theorem 1 for the language
at hand.

Example 7 (Modal information). A simple case in which sources provide formu-
lae in a modal language. Let the trustworthiness relation be given as in example
1, relation 3. Let the knowledge base be empty, and assign information to sources

4 The semantics has been given for a multi-agent language without con�dence levels.
An extension to the languge addressed in this section is straightforward.



as below (left). The fallback tree shows the outcome of evaluation (right). Here,
trusting what a and b agree on (source unit ab) implies accepting that agent 1
has a full belief regarding p. Trusting both sources (node a, b) implies accepting
that 1 is inconsistent.

a : B1 p

b : B1 ¬p
f

ab : B1 p ∨ B1 ¬p

B1 p : a ���
�

b : B1 ¬p
??

?

a, b : B1(p ∧ ¬p)

∅ : ⊥

If the information sources are themselves agents, the situation is at once
much more complex, and we propose this to other researchers in the community
as an interesting and challenging application of multi-modal logics. One problem
is that we can no longer implement agreement and consolidation by means of
simple Boolean operations. In some cases we may use the notion of �group belief�
for agreement and �distributed belief� for consolidation (see e.g. [5]).

However, we can also use the full expressive power of multi-modal Æ> to
specify very complex formulae delivered by each agent, in which case these op-
erators are no longer su�cient for this purpose. We plan to address this in a
follow-up paper.

4 Related work

The present account of trustworthiness generalizes and clari�es the approach in-
troduced by John Cantwell [1]. Our approach improves on Cantwell's by making
a clear separation between the notion of trustworthiness on the one hand, and
information and belief on the other, which allows for the notion of trustworthi-
ness level to be separated from a given model. Furthermore, the present theory
gives informative results for various weak kinds of trustworthiness relations that
yield vacuous output on Cantwell's approach.5

In this paper, no attempt has been made to give a general account of the
basic non-relative notion of trust; for this, see Jones [6]. We intend to apply
the present theory of relative trustworthiness to Jones' analysis of trust in a
forthcoming paper. We also wish to explore the complex subjects of construction
and revision of trustworthiness relations in the future.

5 Cantwell incorporates his theory of trustworthiness into a theory of belief revision.
This is an application that we have not gone into.



Bibliography

[1] John Cantwell. Resolving con�icting information. Journal of Logic, Language,
and Information, 7:191�220, 1998.

[2] John Cantwell. Non-Linear Belief Revision. Doctoral dissertation, Uppsala Uni-
versity, Uppsala, 2000.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2 edition, 2002.

[4] Iselin Engan, Tore Langholm, Espen H. Lian, and Arild Waaler. Default reasoning
with preference within only knowing logic. Submitted for publication.

[5] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge, Mass., 1995.

[6] Andrew J. I. Jones. On the concept of trust. Decision Support Systems, 33:225�
232, 2002.

[7] Hector J. Levesque. All I know: A study in autoepistemic logic. Arti�cial Intelli-
gence, 42:263�309, 1990.

[8] E. H. Lian, T. Langholm, and A Waaler. Only knowing with con�dence levels:
Reductions and complexity. In JELIA 2004, Logics in Arti�cial Intelligence, 9th
European Conference, pages 500�512, Lisbon, Portugal, 2004.

[9] K. Segerberg. Some modal reduction theorems in autoepistemic logic. Uppsala
Prints and Preprints in Philosophy, 1995.

[10] Arild Waaler. Logical Studies in Complementary Weak S5. Doctoral thesis, Uni-
versity of Oslo, Oslo, 1994.

[11] Arild Waaler. Consistency proofs for systems of multi-agent only knowing. Ad-
vances in Modal Logic, 2005.

[12] Arild Waaler, Johan W. Klüwer, Tore Langholm, and Espen H. Lian. Only know-
ing with degrees of con�dence. Submitted for publication, 2005.

[13] Arild Waaler and Bjørnar Solhaug. Semantics for multi-agent only knowing (ex-
tended abstract). Submitted for publication, 2005.


