
Combining Answer Sets of

Nonmonotonic Logic Programs

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. This paper studies compositional semantics of nonmonotonic
logic programs. We suppose the answer set semantics of extended disjunc-
tive programs and consider the following problem. Given two programs
P1 and P2, which have the sets of answer sets AS(P1) and AS(P2), re-
spectively; find a program Q which has answer sets as minimal sets S∪T

for S from AS(P1) and T from AS(P2). The program Q combines an-
swer sets of P1 and P2, and provides a compositional semantics of two
programs. Such program composition has application to coordinating
knowledge bases in multi-agent environments. We provide methods for
computing program composition and discuss their properties.

1 Introduction

Combining knowledge of different information sources is a central topic in multi-
agent systems. In those environments, different agents generally have different
knowledge and belief, then coordination among agents is necessary to form ac-
ceptable agreements. In computational logic, knowledge and belief of an agent
are represented by a set of formulas. Combining multiple knowledge bases is then
formulated as the problem of composing different theories. In multi-agent envi-
ronments, individual agents are supposed to have incomplete information. Since
theories including incomplete information are nonmonotonic, it is important and
meaningful to develop a framework of composing nonmonotonic theories.
To see the problem, suppose the following scenario: there is a trouble in a

system which consists of three components c1, c2, and c3. After some diagnoses,
an expert e1 concludes that the trouble would be caused by one of the two com-
ponents c1 and c2, but they are unlikely to be in trouble at the same time. On the
other hand, another expert e2 concludes that the trouble would be caused by one
of the two components c2 and c3, while they would not disorder simultaneously.
Two experts’ diagnoses are encoded as the following logic programs:

e1 : c1 ← not c2,

c2 ← not c1,

e2 : c2 ← not c3,

c3 ← not c2.

Here, not represents negation as failure and the rules ci ← not cj and cj ← not ci
encode two alternative causes. By merging two programs, the program e1 ∪ e2
has two answer sets {c1, c3} and {c2}, which would be acceptable to each expert.
(Note: e1 (resp. e2) represents that c1 and c2 (resp. c2 and c3) are alternative
causes of the problem, but each expert does not exclude the possibility of having
c1 and c3 at the same time.)
The story goes on: e1 consider that the possible cause is either c1 or c2, but

he empirically knows that c1 is more likely to cause the trouble. Similarly, e2
consider that the possible cause is either c2 or c3, but she empirically knows that
c2 is more likely to cause the trouble. Two experts then slightly modify their
diagnoses as

e′1 : c1 ← not c2,

c2 ← ¬ c1,

e′2 : c2 ← not c3,

c3 ← ¬ c2.

After the modification, e′1 is read as: c1 is considered a cause if there is no
evidence of c2, and c2 will not become a cause unless c1 is explicitly negated. e

′
2

is read in a similar way. Merging two programs, however, the program e′1 ∪ e
′
2

has the single answer set {c2}, which reflects the result of diagnosis by e
′
2 but

does not reflect e′1. When two experts are equally reliable, the result might be
unsatisfactory. In fact, e′2 puts weight on c2 relative to c3 and e

′
1 puts weight on

c1 relative to c2. After integrating these diagnoses, there is no reason to conclude
c2 as the plausible conclusion.
The above example illustrates that composition of nonmonotonic theories is

not achieved by simply merging them. The problem is then how to build a
compositional semantics of nonmonotonic theories. In this paper, we consider
composition of extended disjunctive programs under the answer set semantics

[11]. An answer set is a set of literals which corresponds to a belief set being
built by a rational reasoner on the basis of a program [2]. A program generally
has multiple answer sets, and different agents have different collections of answer
sets. We then capture composition of two programs as the problem of building
a new program which combines answer sets of the original programs. Formally,
the problems considered in this paper are described as follows.

Given: two programs P1 and P2;

Find: a program Q satisfying AS(Q) = min(AS(P1)] AS(P2)) where AS(P)
represents the set of answer sets of a program P and AS(P1)] AS(P2) =
{S ∪ T | S ∈ AS(P1) and T ∈ AS(P2)},

where min(X) = {Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y }. The program Q satisfying
the above condition is called composition of P1 and P2. The result of composition

combines answer sets of two programs, which has the effect of amalgamating the
original belief of each agent. We develop methods for constructing a program
having the compositional semantics.
The rest of this paper is organized as follows. Section 2 introduces basic

notions used in this paper. Section 3 presents compositional semantics and its
technical properties. Section 4 provides methods for building programs which
reflect compositional semantics. Section 5 addresses permissible composition for
multi-agent coordination. Section 6 discusses related issues and Section 7 sum-
marizes the paper.

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic
programming.
A program considered in this paper is an extended disjunctive program (EDP)

which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln

(n ≥ m ≥ l ≥ 0)

where each Li is a positive/negative literal, i.e., A or ¬A for an atom A, and
not is negation as failure (NAF). notL is called an NAF-literal. The sym-
bol “;” represents disjunction. The left-hand side of the rule is the head , and
the right-hand side is the body. For each rule r of the above form, head(r),
body+(r) and body−(r) denote the sets of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
and {Lm+1, . . . , Ln}, respectively. Also, not body

−(r) denotes the set of NAF-
literals {notLm+1, . . . , not Ln}. A disjunction of literals and a conjunction of
(NAF-)literals in a rule are identified with its corresponding sets of literals. A rule
r is often written as head(r) ← body+(r), not body−(r) or head(r) ← body(r)
where body(r) = body+(r)∪not body−(r). A rule r is disjunctive if head(r) con-
tains more than one literal. A rule r is an integrity constraint if head(r) = ∅; and
r is a fact if body(r) = ∅. A program is an extended logic program (ELP) if it con-
tains no disjunctive rule. A program is NAF-free if no rule contains NAF-literals.
A program with variables is semantically identified with its ground instantiation,
and we handle propositional and ground programs only.
The semantics of EDPs is given by the answer set semantics [11]. Let Lit be

the set of all ground literals in the language of a program. A set S(⊂ Lit) satisfies
a ground rule r if body+(r) ⊆ S and body−(r)∩S = ∅ imply head(r)∩S 6= ∅. In
particular, S satisfies a ground integrity constraint r with head(r) = ∅ if either
body+(r) 6⊆ S or body−(r) ∩ S 6= ∅. S satisfies a ground program P if S satisfies
every rule in P .
Let P be an NAF-free EDP. Then, a set S(⊆ Lit) is an answer set of P if S

is a minimal set such that

1. S satisfies every rule from the ground instantiation of P ,
2. If S contains a pair of complementary literals L and ¬L, S = Lit.

Next, let P be any EDP and S ⊆ Lit. For every rule r in the ground instantiation
of P , the rule head(r)∩S ← body+(r) is included in the reduct SP if body+(r) ⊆ S
and body−(r)∩S = ∅. Then, S is an answer set of P if S is an answer set of SP .

Remark: The definition of a reduct presented above is slightly different from
the original one in [11]. In [11], the rule head(r) ← body+(r) is included in the
reduct PS (called Gelfond-Lifschitz reduction) if body−(r)∩S = ∅. Our reduction
imposes additional conditions, but two reductions produce the same answer sets
of EDPs.

Proposition 2.1 For any EDP P , S is an answer set of SP iff S is an answer

set of PS.

Proof. If S is an answer set of P S , it is a minimal set satisfying every rule in
PS . For any rule r in SP \ PS , it holds body+(r) ⊆ S, (head(r) ← body+(r)) ∈
PS and (head(r) ∩ S ← body+(r)) ∈ SP . As S satisfies PS , body+(r) ⊆ S

implies head(r) ∩ S 6= ∅. So, S satisfies SP . Assume that there is a minimal set
T ⊂ S satisfying every rule in SP . Any rule r in PS \ SP satisfies either (a)
body+(r) 6⊆ S or (b) body+(r) ⊆ S, (head(r)← body+(r)) ∈ PS and (head(r) ∩
S ← body+(r)) ∈ SP . In case of (a), body+(r) 6⊆ S implies body+(r) 6⊆ T .
Then, T satisfies r. In case of (b), as T satisfies SP , body+(r) ⊆ T implies
T ∩ (head(r) ∩ S) 6= ∅, thereby T ∩ head(r) 6= ∅. Thus, in each case T satisfies
every rule in PS . This contradicts the fact that S is a minimal set satisfying P S .
Then, S is also a minimal set satisfying every rule in SP . Hence, S is an answer
set of P . The converse is shown in a similar manner. ut

Example 2.1. Let P be the program:

p ; q ←,

q ← p,

r ← not p.

For S = {q, r}, PS becomes

p ; q ←,

q ← p,

r ←,

while SP becomes

q ←,

r ← .

Each reduct produces the same answer set S. Note that {p, q} does not become
an answer set of P .

For later convenience, we use the reduct SP for computing answer sets of P .
A program has none, one, or multiple answer sets in general. The set of all

answer sets of P is written as AS(P). A program having a single answer set is
called categorical [2]. Categorical programs include important classes of programs
such as definite programs, stratified programs, and call-consistent programs. Every
NAF-free ELP has a single answer set. An answer set is consistent if it is not
Lit. A program P is consistent if it has a consistent answer set; otherwise, P is
inconsistent.
A literal L is a consequence of credulous reasoning in a program P (written as

L ∈ crd(P)) if L is included in some answer set of P . A literal L is a consequence
of skeptical reasoning in a program P (written as L ∈ skp(P)) if L is included
in every answer set of P . Clearly, skp(P) ⊆ crd(P) for any P .

3 Combining Answer Sets

In this section, we introduce a compositional semantics of programs. Throughout
the paper, different programs are assumed to have the same underlying language
with a fixed interpretation.
Let S and T be two sets of literals. Then, define

S] T =

{

S ∪ T , if S ∪ T is consistent;
Lit , otherwise.

For two collections S and T of sets, define

S] T = {S] T | S ∈ S and T ∈ T }.

Definition 3.1. Let P1 and P2 be two consistent programs. A program Q is
called a composition of P1 and P2 if it satisfies the condition

AS(Q) = min(AS(P1)] AS(P2))

where min(X) = {Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y }.

The set AS(Q) is called the compositional semantics of P1 and P2. By the
definition, the compositional semantics is defined as the collection of minimal
sets which are obtained by combining answer sets of the original programs.

Example 3.1. Let AS(P1) = {{p}, {q}} and AS(P2) = {{p}, {r}}. Then, the
compositional semantics becomes AS(Q) = { {p}, {q, r} }.

Note that we do not consider composition of inconsistent programs, because
such composition appears meaningless and trivial. So in program composition
consistent programs are handled hereafter.

Proposition 3.1 Let P1 and P2 be two consistent programs, and Q a result of

composition. Then, ∀S ∈ AS(Q), ∃T ∈ AS(P1) ∪ AS(P2) s.t. T ⊆ S.

Proposition 3.1 presents that every answer set in the compositional semantics
extends some answer sets of the original programs. On the other hand, the
original programs may have an answer set which does not have its extension in
their compositional semantics.

Example 3.2. Let AS(P1) = {{p, q}} and AS(P2) = {{p}, {q, r}}. The compo-
sitional semantics of P1 and P2 becomes AS(Q) = {{p, q}} which extends {p, q}
of P1 and {p} of P2, but does not extend {q, r} of P2.

In the above example, {p, q} absorbs {p} and remains as a result of compo-
sition. Consequently, the set {p, q, r}, which combines {p, q} of P1 and {q, r} of
P2, becomes non-minimal and is excluded from the result of composition.
Such cases are formally stated as follows.

Definition 3.2. Let P1 and P2 be two consistent programs, and Q a result of
composition. When AS(Q) = AS(P1), P1 absorbs P2.

In Example 3.2, P1 absorbs P2. If one program absorbs another program, the
compositional semantics coincides with one of the original programs. The next
proposition characterizes situations in which absorption happens.

Proposition 3.2 Let P1 and P2 be two consistent programs, and Q a result of

composition. Then, P1 absorbs P2 iff for any S ∈ AS(P1), there is T ∈ AS(P2)
such that T ⊆ S.

Proof. For any S ∈ AS(P1), suppose that there is T ∈ AS(P2) such that T ⊆ S.
As S ∪ T = S, AS(P1) ⊆ AS(Q). Suppose any T

′ ∈ AS(P2) such that T
′ 6⊆ S

for any S ∈ AS(P1). Then, S ⊂ S ∪ T
′. Since S ∈ AS(Q), S ∪ T ′ 6∈ AS(Q).

Thus, AS(Q) \ AS(P1) = ∅. Hence, AS(Q) = AS(P1).
Conversely, if AS(Q) = AS(P1), for any S ∈ AS(P1) there is T ∈ AS(P2)

such that S = S ∪ T . Then, T ⊆ S. ut

Skeptical/credulous inference in compositional semantics has the following
properties.

Proposition 3.3 Let P1 and P2 be two consistent programs, and Q a result of

composition. Then,

1. crd(Q) ⊆ crd(P1) ∪ crd(P2).
2. skp(Q) = skp(P1) ∪ skp(P2).

Proof. The result of (1) holds by Proposition 3.1. To see (2), if any literal L
is included in every answer set S in AS(P1) or included in every answer set T
in AS(P2), it is included in every S ∪ T in AS(Q). Conversely, if any literal
L is included in every answer set U in AS(Q), L is included in every minimal
set S ∪ T for some S ∈ AS(P1) and T ∈ AS(P2). Suppose L ∈ S and there is
S′ ∈ AS(P1) such that L 6∈ S

′. Then, there is T ∈ AS(P2) such that L ∈ T .
If there is T ′ ∈ AS(P2) such that L 6∈ T

′, then L 6∈ S′ ∪ T ′ thereby there is
V ∈ AS(Q) such that L 6∈ V . Contradiction. ut

Example 3.3. LetAS(P1) = {{p, q}} andAS(P2) = {{p}, {q, r}} where crd(P1) =
skp(P1) = { p, q }, crd(P2) = { p, q, r}, and skp(P2) = ∅. The compositional se-
mantics of P1 and P2 becomes AS(Q) = {{p, q}} where crd(Q) = skp(Q) =
{p, q}.

The result of composition possibly becomes inconsistent even if the original
programs are consistent.

Example 3.4. Let AS(P1) = {{p}} and AS(P2) = {{¬p}}. Then, AS(Q) =
{Lit }.

When AS(Q) has no consistent answer set, we consider that program com-
position fails. A necessary and sufficient condition to have a successful program
composition is as follows.

Proposition 3.4 Let P1 and P2 be consistent programs, and Q a result of com-

position. Then, Q is consistent iff there are S ∈ AS(P1) and T ∈ AS(P2) such
that S ∪ T is consistent.

Proof. Q is consistent iff there is a consistent set S ∪ T in AS(P1)]AS(P2) for
S ∈ AS(P1) and T ∈ AS(P2). Hence, the result follows. ut

In program composition, the problem of interest is the cases where one pro-
gram does not absorb the other and the result of composition is consistent. In
the next section, we present methods for computing program composition.

4 Composing Programs

In this section, every program is supposed to have a finite number of answer sets.
We first introduce an additional notation used in this section. Given programs
P1, . . . , Pk, define

P1 ; · · · ; Pk =

{head(r1); · · · ;head(rk)← body(r1), . . . , body(rk) | ri ∈ Pi (1 ≤ i ≤ k) }.

Definition 4.1. Given two programs P1 and P2,

1. Compute R(S, T) = SP1 ∪
TP2 for every S ∈ AS(P1) and T ∈ AS(P2).

2. Let AS(P1) = {S1, . . . , Sm } and AS(P2) = {T1, . . . , Tn }. Then, define

P1 ¯ P2 = R(S1, T1) ; · · · ; R(Sm, Tn)

where R(S1, T1), . . . , R(Sm, Tn) is any enumeration of the R(S, T)’s con-
structed in Step 1.

By the definition, P1¯P2 is computed in time |P1|×|P2|×|AS(P1)|×|AS(P2)|,
where |P | represents the number of rules in P and |AS(P)| represents the number

of answer sets of P . In particular, if P1 and P2 respectively have the single answer
set AS(P1) = {S} and AS(P2) = {T}, it becomes P1 ¯ P2 =

SP1 ∪
TP2.

The program P1 ¯ P2 generally contains useless or redundant literals/rules,
and the following program transformations are useful to simplify the program:
(i) Delete a rule r from a program if head(r)∩ body+(r) 6= ∅ (elimination of tau-

tologies: TAUT); (ii) Delete a rule r from a program if there is another rule r′ in
the program such that head(r′) ⊆ head(r) and body(r′) ⊆ body(r) (elimination
of non-minimal rules: NONMIN); (iii) A disjunction (L;L) appearing in head(r)
is merged into L, and a conjunction (L,L) appearing in body(r) is merged into L
(merging duplicated literals: DUPL). These program transformations all preserve
the answer sets of an EDP [4].

Example 4.1. Consider two programs:

P1 : p← not q,

q ← not p,

s← p,

P2 : p← not r,

r ← not p,

where AS(P1) = {{p, s}, {q}} and AS(P2) = {{p}, {r}}. Then, there are four
R(S, T) such that

R({p, s}, {p}) : p←, s← p,

R({p, s}, {r}) : p←, s← p, r ←,

R({q}, {p}) : q ←, p←,

R({q}, {r}) : q ←, r ← .

P1 ¯ P2 contains the following seven rules (after applying DUPL):

p ; q ←,

p ; r ←,

p ; q ; r ←,

q ; s← p,

q ; r ; s← p,

p ; q ; s← p,

p ; r ; s← p.

Further, those rules, other than the first one, the second one, and the fourth one,
are eliminated by NONMIN. Consequently, the simplified program becomes

p ; q ←,

p ; r ←,

q ; s← p.

The operator ¯ has the following properties.

Proposition 4.1 The operation ¯ is commutative and associative.

Proof. The commutative law P1 ¯ P2 = P2 ¯ P1 is straightforward. To see the
associative law, both (P1 ¯ P2) ¯ P3 and P1 ¯ (P2 ¯ P3) consist of rules of the
form: head(r1) ; · · · ; head(rk)← body(r1), . . . , body(rk) for ri ∈ R(S, T, U) (1 ≤
i ≤ k) where R(S, T, U) = SP1 ∪

TP2 ∪
UP3 for any S ∈ AS(P1), T ∈ AS(P2),

and U ∈ AS(P3). Hence, (P1 ¯ P2)¯ P3 = P1 ¯ (P2 ¯ P3). ut

Now we proceed to show the main result of this paper.

Lemma 4.2 Let P1 and P2 be two consistent programs, and S ∈ AS(P1) and
T ∈ AS(P2). Then, S ∪ T is an answer set of SP1 ∪

TP2.

Proof. S is a minimal set satisfying SP1 and T is a minimal set satisfying
TP2.

Since body(r) ⊆ S and head(r) ⊆ S for any r ∈ SP1 and body(r
′) ⊆ T and

head(r′) ⊆ T for any r′ ∈ TP2, S ∪ T satisfies
SP1 ∪

TP2. Suppose that there is
T ′ ⊂ T such that S ∪ T ′ satisfies SP1 ∪

TP2. For any L ∈ T \ T
′, if L 6∈ S, T ′

satisfies TP2. But this cannot happen, since T is a minimal set satisfying
TP2.

Then, L ∈ S, thereby S ∪ T = S ∪ T ′. Thus, S ∪ T is a minimal set satisfying
SP1 ∪

TP2. As
SP1 ∪

TP2 is NAF-free, S ∪ T becomes an answer set of it. ut

Lemma 4.3 If U is a minimal set satisfying (R(S, T) ; R(S ′, T ′)), U is a min-

imal set satisfying R(S, T).

Proof. If there is V ⊂ U satisfying R(S, T), for any rule r ∈ R(S, T) it holds
body(r) 6⊆ V or head(r) ⊆ V . Then, V satisfies every rule head(r);head(r′) ←
body(r), body(r′) in (R(S, T) ; R(S′, T ′)) for any r′ ∈ R(S′, T ′). This contradicts
the fact that U is a minimal set satisfying (R(S, T) ; R(S ′, T ′)). ut

Theorem 4.4. Let P1 and P2 be two consistent programs. Then, AS(P1¯P2) =
min(AS(P1)] AS(P2)).

Proof. Let U ∈ min(AS(P1)] AS(P2)). Then, there is S ∈ AS(P1) and
T ∈ AS(P2) such that U = S∪T . By Lemma 4.2, U is an answer set of R(S, T).
Then, U satisfies P1 ¯ P2. Suppose that there is a minimal set V ⊂ U which
satisfies P1 ¯ P2. In this case, V is a minimal set satisfying some R(S

′, T ′) in
P1 ¯ P2 (Lemma 4.3). It then holds that V = S ′ ∪ T ′ for some S′ ∈ AS(P1)
and T ′ ∈ AS(P2) (by Lemma 4.2). Since V ∈ AS(P1)] AS(P2) and V ⊂ U ,
U 6∈ min(AS(P1)]AS(P2)). Contradiction. Thus, U is a minimal set satisfying
P1 ¯ P2, so U ∈ AS(P1 ¯ P2).
Conversely, let U ∈ AS(P1 ¯ P2). Then, U is a minimal set satisfying some

R(S, T) in P1 ¯P2 (Lemma 4.3). It then holds U = S ∪ T for some S ∈ AS(P1)
and T ∈ AS(P2) (by Lemma 4.2). Thus, U ∈ AS(P1)] AS(P2). Suppose that
there is a minimal set V ⊂ U such that V = S ′ ∪ T ′ for some S′ ∈ AS(P1)
and T ′ ∈ AS(P2). In this case, V ∈ min(AS(P1)] AS(P2)), and V becomes
an answer set of P1 ¯ P2 by the proof presented above. This contradicts the
assumption of U ∈ AS(P1 ¯ P2). Hence, U ∈ min(AS(P1)] AS(P2)). ut

Example 4.2. In Example 4.1, AS(P1 ¯ P2) = {{p, q}, {p, s}, {q, r}}, which co-
incides with the result of composition.

Two programs P1 and P2 are merged by taking their union P1∪P2. Program
composition and merging bring syntactically and semantically different results
in general, but there are some relations for special cases.

Proposition 4.5 For two consistent NAF-free programs P1 and P2, if P1 ∪ P2

is consistent, P1 ¯ P2 is consistent.

Proof. If P1 ∪ P2 is consistent, there is
SP1 for S ∈ AS(P1) and

TP2 for
T ∈ AS(P2) such that

SP1 ∪
TP2 is consistent. Then, S ∪ T is consistent. By

Proposition 3.4 and Theorem 4.4, P1 ¯ P2 is consistent. ut

The converse of Proposition 4.5 does not hold in general.

Example 4.3. Let P1 = { p←} and P2 = {← p }. Then, P1 ¯ P2 = { p←}, but
P1 ∪ P2 has no answer set.

In the general case, there is no relation for the “easiness” of inconsistency
arising between composition and merging.

Example 4.4. Let P1 = { p ← not¬p } and P2 = {¬p ← not p }. Then, P1 ∪ P2

is consistent, but P1¯P2 = { p← , ¬p←} is inconsistent. On the other hand,
let P3 = { p ← not q, q ← not r } and P4 = { r ← not p }. Then, P3 ∪ P4 is
inconsistent, but P3 ¯ P4 = { q ; r ←} is consistent.

For extended logic programs, the following syntactical and semantical rela-
tions hold.

Proposition 4.6 For two consistent NAF-free ELPs P1 and P2, P1 ¯ P2 ⊆
P1 ∪ P2.

Proof. In this case, each program has the single answer set. Let AS(P1) = {S}
and AS(P2) = {T}. Then, P1 \

SP1 = { r | r ∈ P1 and body(r) 6⊆ S }, and
SP1 \ P1 = ∅. This is also the case for P2. Since P1 ¯ P2 =

SP1 ∪
TP2, the result

follows. ut

Proposition 4.7 Let P1 and P2 be two consistent NAF-free ELPs. Then, U ⊆
V holds for the answer set U of P1 ¯ P2 and the answer set V of P1 ∪ P2.

Proof. Let AS(P1) = {S} and AS(P2) = {T}. Then, AS(P1 ¯ P2) = {S ∪ T}.
On the other hand, if P1 ∪P2 is inconsistent, AS(P1 ∪P2) = {Lit}. So, S ∪ T ⊆
Lit. Else if P1 ∪ P2 has the consistent answer set V , S ∪ T is consistent by
Proposition 4.5. Then, S ∪ T ⊂ V by Proposition 4.6. ut

Example 4.5. Let P1 = { p ← q } and P2 = { q ←}. Then, P1 ¯ P2 = { q ←}
and P1 ∪ P2 = { p← q, q ←}. So P1 ¯ P2 ⊆ P1 ∪ P2 and {q} ∈ AS(P1 ¯ P2) is
a subset of {p, q} ∈ AS(P1 ∪ P2).

5 Permissible Composition

In Section 3, we introduced the compositional semantics of two programs and
Section 4 provided a method of composing programs. In this section, we argue
permissible conditions for the compositional semantics in multi-agent coordina-
tion. First, we introduce a criterion for selecting answer sets in the compositional
semantics.

Definition 5.1. Let P1 and P2 be two consistent programs, and Q a result of
composition. Then, any answer set S ∈ AS(Q) is conservative if it satisfies every
rule in P1 ∪ P2.

Example 5.1. Recall two programs in Example 4.1,

P1 : p← not q,

q ← not p,

s← p,

P2 : p← not r,

r ← not p,

where AS(P1) = {{p, s}, {q}} and AS(P2) = {{p}, {r}}. The compositional
semantics is AS(Q) = {{p, q}, {p, s}, {q, r}}. Among them, {p, s} and {q, r}
satisfy every rule in P1 ∪ P2, so they are conservative. Note that {p, q} does not
satisfy the third rule of P1.

Conservative answer sets are acceptable to each agent because they satisfy the
original program of each agent. Unfortunately, conservative answer sets do not
always exist in the compositional semantics. For instance, in Example 5.1 if P2

contains constraints ← s and ← q, no conservative answer set exists. Existence
of no conservative answer set is not a serious flaw in the compositional seman-
tics, however. In fact, different agents have different beliefs in the multi-agent
environment, and it may happen that one agent must give up some original be-
lief to reach a reasonable compromise. On the other hand, an agent may possess
some persistent beliefs that cannot be abandoned. Those persistent beliefs are
retained by each agent in coordination. Formally, those beliefs in a program P

are distinguished as PB ⊆ P where PB is the set of rules that should be satisfied
by the compositional semantics. In this setting, a variant of the compositional
semantics is defined as follows.

Definition 5.2. Let P1 and P2 be two consistent programs, and PB1 and PB2

their persistent beliefs, respectively. A program Ω is called a permissible compo-
sition of P1 and P2 if it satisfies the condition

AS(Ω) = {S | S ∈ min(AS(P1)] AS(P2)) and S satisfies PB1 ∪ PB2}.

The set AS(Ω) is called the permissible compositional semantics of P1 and
P2. Any answer set in AS(Ω) is called a permissible answer set. By the def-
inition, permissible composition adds an extra condition to the compositional

semantics of Definition 3.1. The permissible compositional semantics reduces to
the compositional semantics when PB1 ∪ PB2 = ∅. In particular, conservative
answer sets are permissible answer sets with PB1 ∪ PB2 = P1 ∪ P2.
Every permissible answer set satisfies persistent beliefs of each agent, and

extends a belief set of an agent by additional information of another agent.
Since permissible answer sets are answer sets of the compositional semantics,
they inherit properties provided in Section 3 (except Proposition 3.3(2)).
Program composition that reflects the permissible compositional semantics

is achieved by introducing every rule in PB1 ∪ PB2 as a constraint to P1 ¯
P2. Given a program P , let IC(P) = {← body(r), not head(r) | r ∈ P }
where not head(r) is the conjunction of NAF-literals {notL1, . . . , not Ll } for
head(r) = {L1, . . . , Ll }.

Theorem 5.1. Let P1 and P2 be consistent programs, and Ω a result of permis-

sible composition. Then, AS(Ω) = AS((P1 ¯ P2) ∪ IC(PB1) ∪ IC(PB2)).

Proof. By the definition of AS(Ω) and the result of Theorem 4.4, S ∈ AS(Ω)
iff S is an answer set of P1 ¯ P2 and satisfies PB1 ∪ PB2

iff S is an answer set of P1 ¯ P2 and satisfies IC(PB1) ∪ IC(PB2)
iff S ∈ AS((P1 ¯ P2) ∪ IC(PB1) ∪ IC(PB2)). ut

Example 5.2. Consider two programs in Example 5.1 where PB1 = { s ← p }
and PB2 = ∅. Then, (P1 ¯ P2) ∪ IC(PB1) ∪ IC(PB2) becomes

p ; q ←,

p ; r ←,

q ; s← p,

← p, not s,

which has two permissible answer sets {p, s} and {q, r}.

6 Discussion

A lot of studies exist for compositional semantics of logic programs (see [6, 9] for
excellent surveys). A semantics is compositional if the meaning of a program can
be obtained from the meaning of its components. The union of programs is the
simplest composition between programs. However, semantics of logic programs
is not compositional with respect to the union of programs even for definite
logic programs. For instance, two definite logic programs P1 = { p ← q } and
P2 = { q ←} have the least Herbrand models ∅ and {q}, respectively. But the
least Herbrand model of the program union P1 ∪P2 is not obtained by the com-
position of ∅ and {q}. To solve the problem, a number of different compositional
semantics have been proposed in the literature [6]. In composing nonmonotonic
logic programs, difficulty of the problem is understood as: “non-monotonic rea-
soning and compositionality are intuitively orthogonal issues that do not seem

easy to be reconciled. Indeed the semantics for extended logic programs are typ-

ically non-compositional w.r.t. program union” [6]. With this reason, studies
for compositional semantics of nonmonotonic logic programs mainly concern
with the issue of devising a compositional semantics that can accommodate (re-
stricted) nonmonotonicity, or imposing syntactic conditions on programs to be
compositional [5, 7, 8, 10, 15].

In this respect, our approach is different from those previous studies. Our
primary interest is not simply merging two programs but building a new pro-
gram that combines answer sets of the original programs. One may wonder the
practical value of such combination of answer sets aside from original programs.
For instance, given two programs P1 = {¬p ← not p } and P2 = { p ←}, one
would consider the meaning of program composition as the answer set {p} of
P1∪P2. By contrast, our compositional semantics P1¯P2 becomes inconsistent,
i.e., combination of {¬p} and {p} produces Lit. To justify our position, suppose
the following situation: the agent P1 does not believe the existence of an alien
unless its existence is proved, while the agent P2 believes the existence of aliens
with no doubt. The situation is encoded by the above program. Then, what con-
clusion should be drawn after combining these conflicting beliefs of agents? If
one simply merges beliefs by program union, the existence of alien is concluded
by the answer set {p}. In our compositional semantics, two beliefs do not coexist
thereby contradict. In multi-agent environments, different agents have different
levels of beliefs. A cautious agent might have knowledge in a default form, while
an optimistic agent might have knowledge in a definite form. In this circum-
stance, it appears careless to simply merge knowledge from different information
sources. We then took an approach of retaining belief of each agent and combine
answer sets of different programs. As a result, the compositional semantics re-
flects information included in (at least one) answer set of the original programs.
In this sense, our program composition is intended to coordinate agents, rather
than to synthesize a program by its component. Note that program composition
should be distinguished from revision or update, in which one of two information
is known more reliable. In the above example, it is reasonable to accept P1 ∪P2

as a result of revision/update of P1 with P2. Because in this case P2 is consid-
ered new information which precedes P1. In program composition P1 and P2 are
supposed to have the same status, so there is no reason to rely P2 over P1.

Baral et al. [1] introduce algorithms for combining logic programs by enforc-
ing satisfaction of integrity constraints. They request that every answer set of
a resulting program to be a subset of an answer set of P1 ∪ P2, which is dif-
ferent from our requirement. Their algorithm is not applicable to unstratified
logic programs. The compositional semantics introduced in this paper does not
enforce satisfaction of integrity constraints of original programs. One reason for
this is that in nonmonotonic logic programs inconsistency may arise aside from
integrity constraints. For instance, the integrity constraint ← p has the same
effect as the rule q ← p, not q under the answer set semantics. Then, there seems
no reason to handle integrity constraints exceptionally in a program. If desired,
however, it is easy to have a variant of program composition satisfying con-

straints as (P1 ¯ P2) ∪ IC1 ∪ IC2, where ICi (i = 1, 2) is the set of integrity
constraints included in Pi. By the introduction of integrity constraints, every
answer set which does not satisfy IC1 ∪ IC2 is filtered out. This is also realized
by a permissible version of the compositional semantics by putting PB1 = IC1

and PB2 = IC2. Combination of propositional theories has also been studied
under the names of merging [12] or arbitration [13], but they do not handle
nonmonotonic theories. Sakama and Inoue [14] introduce a framework of coordi-
nation between logic programs. They study two problems as follows: given two
programs P1 and P2, (i) find a program Q which has the set of answer sets such
that AS(Q) = AS(P1)∪AS(P2); and (ii) find a program R which has the set of
answer sets such that AS(R) = AS(P1) ∩ AS(P2). A program Q is called gen-

erous coordination and R is called rigorous coordination of two programs. They
provide methods of building such programs. Compared with the program com-
position of this paper, generous/rigorous coordination does not change answer
sets of the original programs. That is, generous one collects every answer set of
each program, while rigorous one picks up answer sets that are common between
two programs. By contrast, we combine answer sets of each program in every
possible way. The resulting program and its compositional semantics are both
different from generous/rigorous coordination. As addressed above, our program
composition is also intended to coordinate agents, it would be interesting to
investigate relations among those different types of coordination.
The program composition introduced in Section 4 produces NAF-free EDPs.

One may think this uneasy, because this is the case even for composing ELPs
containing no disjunction. Disjunctive programs are generally harder to compute,
so that it is desirable to have a non-disjunctive program as a result of composing
non-disjunctive programs. Technically, the program P1 ¯ P2 is transformed to a
non-disjunctive program if P1¯P2 is head-cycle-free, i.e., it contains no positive
cycle through disjuncts appearing in the head of a disjunctive rule [3]. If P1¯P2

is head-cycle-free, the program is converted to an ELP by shifting disjuncts
in the head of a rule to the body as NAF-literals in every possible way as
leaving one in the head. For instance, the program P1 ¯ P2 in Example 4.1 is
converted to the ELP: { p ← not q, q ← not p, p ← not r, r ← not p, q ←
p, not s, s← p, not q }. The resulting program has the same answer sets as the
original disjunctive program.

7 Conclusion

This paper has studied compositional semantics of nonmonotonic logic programs.
Given two programs, we first introduced combination of answer sets as the com-
positional semantics of those programs. Then, we developed a method of building
a program which reflects the compositional semantics of the original programs. A
permissible composition was also introduced for multi-agent coordination. The
proposed framework provides a new compositional semantics of nonmonotonic
logic programs, and serves as a declarative basis for coordination in multi-agent
systems. From the viewpoint of answer set programming, program composition

is considered as a program development under a specification that requests a
program reflecting the meanings of two or more programs.
The approach taken in this paper requires computing every answer set of pro-

grams before composition. This may often be infeasible when a program possesses
an exponential number of answer sets. The same problem arises in computing
answer sets by existing answer set solvers, and to overcome the bottleneck some
approximation techniques would be required. Combining nonmonotonic theories
is difficult but important research topic in logic based multi-agent systems, and
there is much work to be done.

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions of Knowledge and Data Engineering, 3(2):208–220, 1991.

2. C. Baral and M. Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming, 19/20:73–148, 1994.

3. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic
programs. Annals of Mathematics and Artificial Intelligence, 12(1):53–87, 1994.

4. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by
partial evaluation. Journal of Logic Programming, 32(3):207–228, 1997.

5. A. Brogi, S. Contiero, and F. Turini. Programming by combining general logic
programs. Journal of Logic and Computation, 9(1):7–24, 1999.

6. A. Brogi. On the semantics of logic program composition. Program Development
in Computational Logic, Lecture Notes in Computer Science, 3049, pp. 115–151,
Springer, 2004.

7. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic pro-
gramming with nonmonotonic reasoning. Theoretical Computer Science, 184(1):1–
59, 1997.

8. F. Bry. A compositional semantics for logic programs and deductive databases.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pp. 453–467, MIT Press, 1996.

9. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. Journal
of Logic Programming, 19/20:443–502, 1994.

10. S. Etalle and F. Teusink. A compositional semantics for normal open programs.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pp. 468–482, MIT Press, 1988.

11. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–385, 1991.

12. S. Konieczny and R. Pino-Pérez. On the logic of merging. Proceedings of the 6th
International Conference on Principles of Knowledge Representation and Reason-
ing, pp. 488–498, Morgan Kaufmann, 1998.

13. P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).
IEEE Transactions on Knowledge and Data Engineering 10(1):76–90, 1998.

14. C. Sakama and K. Inoue. Coordination between logical agents. Proceedings of
the 5th International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-V), Lecture Notes in Artificial Intelligence, 3487. pp. 161–177, 2005.

15. S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal
open logic programs. Proceedings of the 1997 International Symposium on Logic
Programming, pp. 371–385, MIT Press, 1997.

