Diagnosis of plan execution and the executing agent
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Abstract. We discuss the application of Model-Based Diagnosis in (agent-based)
planning. Here, a plan together with its executing agent is considered as a system
to be diagnosed. It is assumed that the execution of a plan can be monitored by
making partial observations of the results of actions. These observations are used
to explain the observed deviations from the plan by qualifying some action in-
stances that occur in the plan as behaving abnormally. Unlike in standard model-
based diagnosis, however, in plan diagnosis we cannot assume that actions fail
independently. We focus on two sources of dependencies between failures: such
failings may occur as the result of malfunctioning of the executing agent or may
be caused by dependencies between action instances occurring in a plan. There-
fore, we introduce causal rules that relate health states of the agent and health
states of actions to abnormalities of other action instances. These rules enable us
to determine the underlying causes of plan failing and to predict future anomalies
in the execution of actions.

1 Introduction

The well-known quote?’No plan survives its first contact with the enemsghould re-

mind us thatliagnosisconstitutes an unavoidable part of the plan execution process.
Since there is a huge number of potential factors that might influence, or even prevent,
correct plan execution, it is not surprising that current approaches to plan diagnosis are
rather diverse.

The aim of this paper is to adapt and extend a classical Model-Based Diagnosis
(MBD) approach to the diagnosis of plans. To this end, first we will show how a plan
consisting of a partially ordered set of actions can be viewed as a system to be di-
agnosed and how a diagnosis can be established psirigl observation®f a plan
in progress. Distinguishing between normal and abnormal execution of actions in a
plan, we then introduce sets of actions qualified as abnormal to explain the deviations
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3 The quote is attributed to the Prussian Field Marshall Von Moltke.



between expected plan states and observed plan states. Hence, in this approach, a plan
diagnosis is just a set of abnormal actions that is able to explain the deviations observed.
Although plan diagnosis conceived in this way is a rather straightforward application

of MBD to plans, we do need to introduce new criteria for selecting acceptable plan
diagnoses: First of all, while in standard MBD usually subset-minimal diagnoses, or
within themminimum (cardinality)diagnoses, are preferred, we also prefaximum
informativediagnoses. The latter type of diagnosis maximizes the exact similarity be-
tween predicted and observed plan states. Although maximum informative diagnoses
are always subset minimal, they are not necessarily of minimum cardinality. More dif-
ferences between MBD and plan diagnosis appear if we take a detailed look into the
reasons for choosing minimal diagnoses. The idea of establishing a minimal diagnosis
in MBD is governed by the principle ahinimal changeexplain the abnormalities in

the behavior observed by changing the qualification from normal to abnormal for as
few system components as necessary. Using this principle is intuitively acceptable if
the components qualified as abnormal are failimiependentlyHowever, as soon as
dependenciesxist between such components, the choice for minimal diagnoses cannot
be justified. As we will argue, the existence of dependencies between failing actions in

a plan is often the rule instead of an exception. Therefore, we will refine the concept of

a plan diagnosis by introducing the concept afaaisal diagnosisTo establish such a
causal diagnosis, we consider both the executing agent and its plan as constituting the
system to be diagnosed and we explicitly relate health states of the executing agent and
subsets of (abnormally qualified) actions to the abnormality of other actions in the form

of causal rules. These rules enable us to replace a set of dependent failing actions (e.g. a
plan diagnosis) by a set of unrelatealisesf the original diagnosis. This independent

and usually smaller set of causes constitutes a causal diagnosis, consisting of a health
state of an agent and an independent (possibly empty) set of failing actions. Such a
causal diagnosis always generates a cover of a minimal diagnosis. More importantly,
such causal diagnoses can also be used to predict failings of actions that have to be
executed in the plan and thereby also can be used to assess the consequences of such
failures for goal realizability.

This paper is organized as follows. First of all, in the next section, we place our
approach into perspective by discussing some related approaches to plan diagnosis.
Section 3 introduces the preliminaries of plan-based diagnosis, while Section 4 for-
malizes plan-based diagnosis. Section 5 extends the formalization to determining the
agent’s health state. Finally, we briefly discuss some computational aspects of (causal)
plan diagnosis.

2 Related research

In this section we briefly discuss some other approaches to plan diagnosis. Like we use
MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBDpl&m-

ning agentgelating health states of agentsaotcome®f their planning activities, but

not taking into account faults that can be attributed to actions occurring in a plan as a
separate source of errors. However, instead of focusing upon the relationship between
agent properties and outcomes of plan executions, we take a more detailed approach,



distinguishing two separate sources of errors (actions and properties of the executing
agents) and focusing upon the detection of anomalies during the plan execution. This
enables us to predict the outcomes of a plan on beforehand instead of using them only
as observations.

Another approach that directly applies model-based diagnosis to plan execution has
been proposed in [6]. Here, the authors focus on agents each having an individual plan,
and where conflicts between these plans may arise (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountdhtefer
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [10, 11] applocial diagnosisn order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors). This approach might complement our ap-
proach when conflicts not only arise as the consequence of faulty actions, but also as
the consequence of different selections of sub-plans in a joint plan.

Lesser et al. [3, 9] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use otausal modethat can help an agent to refine its initial diagnosis
of a failingcomponen(called atask of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. While their approach in its ultimate intentions (establishing
anomalies in order to find a suitable plan repair) comes close to our approach, their
approach to diagnosis concentrates on specifying the exact causes of the failing of one
singlecomponenttask) of a plan. Diagnosis is based on observations of a component
without taking into account the consequences of failures of such a component w.r.t. the
remaining plan. In our approach, instead, we are interested in applying MBD-inspired
methods taletectplan failures. Such failures are based on observations during plan ex-
ecution and may concern individual components of the plan, but also agent properties.
Furthermore, we do not only concentrate on failing components themselves, but also on
the consequences of these failures for the future execution of plan elements.

3 Preliminaries

3.1 Model based Diagnosis

In Model-Based Diagnosis (MBD) [4, 5, 13] a systefis modeled as consisting of a
set Comp of components and their relations, for each componentComp a setH,.

of health modess distinguished and for each health mddec H. of each component
¢ a specific (input-output) behavior efis specified. Given some input £ its output
is defined if the health mode of each componert Comp is known. The diagnostic



engine is triggered whenever, under the assumption that all components are functioning
normally, there is a discrepancy between the output as predicted from the input obser-
vations, and the actually observed output. The result of MBD is a suitable assignment
of health modes to the components, callediagnosis such that the actually observed
output isconsistentwith this health mode qualification or can le&plainedby this
qualification. Usually, in a diagnosis one requires the number of components qualified
as abnormally to be minimized.

3.2 States

We consider plan-based diagnosis as a simple extension of model-based diagnosis where
the model is not a description of an underlying system bpia of an agent. Before

we discuss plans, we discuss alnject-or resource-basegdiew on the world, assum-

ing that for the planning problem at hand, the world can be simply described by a set
Obj = {01, 09, ...,0,} Of Objects, their respectiwealue domains; and their (current)
valuess; € S;.* A state of the worldr then is an element of; x Sy x ... x S,,. It will

not always be possible to give a complete state description. Therefore, we introduce a
partial stateas an element € S;, x S;, x ... x S;,, wherel < k < nandl <

i1 < ... < i <n.We useO(r) to denote the set of objec{s;, , 0;,,...,0;,} C Obj
specified in such a state The values; of objecto; € O(x) in = will be denoted by

7(j). The value of an objeai; € Obj not occurring in a partial state is said to be
unknown (or unpredictable) in, denoted byl . Partial states can be ordered with re-
spect to their information content:is said to be contained i, denoted byr C 7/, iff

O(m) C O(n’") andn’(j) = m(j) for everyo; € O(w). We say that two partial states

n’ areequivalentmodulo a set of object9, denoted byr =¢ 7', if for everyo; € O,

7(j) = 7' (j). Finally, we define the partial staterestricted to a given s&?, denoted

by 7 1O, as the state’ C 7 such thaD(7') = O N O(x).

3.3 Goals

An (elementary) gogj of an agent specifies a set of states an agent wants to bring about
using a plan. Here, we specify each such a gaad a constraint, that is a relation over
some produck;, x ... x S;, of domains.

We say that a gogj is satisfied by a partial state, denoted byr = g, if the
relationg contains at least one tuple;, , vs,, . . ., v;, ) such tha(v;, , vi,, ... v;, ) C 7.
We assume each agent to have a(sef such elementary goalse G. We user = G
to denote that all goals i@ hold inr, i.e. forallg € G, 7 = g.

3.4 Actions and action schemes

An action schemer plan operatot is represented as a function that replaces the values
of a subseO,, C Obj by other values, dependent upon the values of anoth&y/set

O, of objects. Hence, every action schem&an be modeled as a (partial) function
fo 1 Sy x ... x 8, — S, x ... x 8, wherel < 4; < ... < i < nand

% In contrast to the conventional approach to state-based planning, cf. [8].



{j1,---, 51} € {i1,...,ir}. The objects whose value domains occudim:(f,) will
be denoted bylomo (o) = {0i,,...,0;,} and, likewiseranp(a) = {oj,,...,0;}.
Note that it is required thatano(a) C domo(«). This functional specificatiorf,,
constitutes th@mormalbehavior of the action scheme, denoted/{}§".

Example 1.Figure 1 depicts two states ando; (the white boxes) each characterized

by the values of four objects;, o2, 03 ando,s. The partial states, andr; (the gray

boxes) characterize a subset of values in a (complete) state. Action schemes are used to
model state changes. The domain of the action scheiehe subsefo;, o2}, which

are denoted by the arrows pointingdo The range ofx is the subse{o; }, which is
denoted by the arrow pointing from Finally, the dashed arrow denotes that the value

of objecto, is not changed by operator(s) causing the state change. ]
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Fig. 1. Plan operators & states.

The correct execution of an action may fail either because of an inherent malfunc-
tioning or because of a malfunctioning of an agent responsible for executing the ac-
tion, or because of unknown external circumstances. In all these cases we would like
to model the effects of executing such failed actions. Therefore, we introduce a set of
health modes\/,, for each action scheme. This set),, contains at least the normal
modenor, the modead indicating the most general abnormal behavior, and possibly
several other specific fault modes. The most general abnormal behavior of @gtion
specified by the functiorf2®, where f2°(s;,, si,,...,5:,.) = (L, L1,..., L) for ev-
ery partial statés;,, si,,...,s;,) € dom(f.).> To keep the discussion simple, in the
sequel we distinguish only the health modes andab.

Given a setA of action schemes, we will need to consider a4et inst(A) of
instancef actions inA. Such instances will be denoted by small roman letigrsf
type(a;) = a € A, such an instance; is said to be otypec. If the context permits
we will use “actions” and “instances of actions” interchangeably.

5 This definition implies that the behavior of abnormal actions is essentially unpredictable.



3.5 Plans

A planis a tupleP = (A, A, <) whereA C Inst(A) is a set of instances of actions
occurring inA and (A, <) is a partial order. The partial order relatienspecifies a
precedence relation between these instances:a’ implies that the instance must
finish before the instana€ may start. We will denote thigansitive reductiorof < by
<, i.e., < is the smallest subrelation ef such that the transitive closure™ of <
equals<.

We assume that if in a plaR two action instances anda’ are independent, in prin-
ciple they may be executed concurrently. This means that the dependency relation
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assumeo satisfy the followingconcurrency requirement

If rano(a) N domo(a’) # @ thena < o’ ora’ < a.

That is, for concurrent instances, domains and ranges do not overlap.

Example 2.Figure 2 gives an illustration of a plan. Arrows relate the objects an action
uses as inputs and the objects it produces as its outputs to the action itself. In this plan,
the dependency relation is specifiedlas< as, as < a4, a4 <K a5, ag <K ag and

a1 < as. Note that the last dependency has to be included beaausbanges the
value ofo, needed byu;. The actiona; shows that not every object occurring in the
domain of an action need to be affected by the action. The adtipasdag illustrate

that concurrent actions may have overlapping domains. [ |

4 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instanaéealth moden,, € {nor, ab} can
be assigned and the result is calledualified plan. In establishing which part of the
plan fails, we are only interested in those actions qualifies as abnormal. Therefore, we
define a qualified versiof, of a planP = (A4, A, <) as atuplePy = (4, A, <,Q),
where@ C A is the subset of instances of actions qualified as abnormal (and therefore,
A — @ the subset of actions qualified as normal).

Since a qualificatiord) corresponds to assigning the health mabléo every action
in Q and sincef2®(s;,, iy, ---,5i,) = (L, L,..., 1) for every actiona € Q with
type(a) = «, the results of anomalously executed actions are unpredictable. Note that
a “normal” plan P corresponds to the qualified pldfy and furthermore that in our
context “undefined” is considered to be equivalent to “unpredictable”.

4.1 Qualified Plan execution

For simplicity, when a pla® is executed, we will assume that every action takes a unit
of time to execute. We are allowed to observe the execution of afpltrdiscrete times

5 Note that sincerano (a) € domo(a), this requirement excludes overlapping ranges of con-
current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.
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Fig. 2. Plans and action instances. Each state characterizes the values of four ehjegiss
andoy. States are changed by application of action instances

t=0,1,2,...,k wherek is the depth of the plan, i.e., the longestchain of actions
occurring inP. Let depthp(a) be the depth of action in plan P = (A, A, <).” We
assume that the plan starts to be executed at time) and that concurrency is fully
exploited, i.e., ifdepthp(a) = k, then execution ofi has been completed at time
t = k + 1. Thus, all actions: with depthp(a) = 0 are completed at time= 1 and
every actionu with depthp(a) = k will be started at timé: and will be completed at
time k+ 1. Note that thanks to the above specified concurrency requirement, concurrent
execution of actions having the same depth leads to a well-defined result.

Let P, denote the set of actionswith depthp(a) = t,let Psy = U,~, Pr, P<¢ =

Uy ¢ P andPyy ) = UZ:t P, Execution ofP on a given initial state, will induce a
sequence of states, o1, . .., o, Whereo;, 1 is generated frora; by applying the set
of actionsP; to 0. Instead, however, of assuming total states and total state transitions,
we define the (predicted) effect of the execution of pfaan a given (partial) state at
timet > 0, denoted by(x, t).

We say tha(#’,t + 1) is (directly) generated by execution 8%, from (=, t), ab-
breviated by(r,t) —q.p (7, t + 1), iff the following conditions hold:

1. 7' Trano(a) = f7 (7 [ domo(a)) for eacha € P, — Q such thatlomo(a) C
O(r), that is, the consequences of all actiansnabled inr can be predicted and

occur inz’ .8

" Here,depthp(a) = 0if {a’ |a’ < a} = @ anddepthp(a) = 1 + maz{depthp(a’) | a' <
a}, else. If the context is clear, we often will omit the subscipt
8 An actiona is enabled in a state if domo(a) C O(m).
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Fig. 3. Plan execution with abnormal actions

2. O(7") N ranp(a) = @ for eacha € Q N P;, since the result of executing an
abnormal action cannot be predicted (even if such an action is enabtgd in

3. O(7') Nranp(a) = & for eacha € P, with domp(a) € O(w), that is, even if
an actiona is enabled in (the complete statg) if a is not enabled inr C oy, the
result is not predictable and therefore does not occut iisince it is not possible
to predict the consequences of actions that depend on values not defined in

4. 7'(i) = w(i) for eacho; & rano(P;), that is, the value of any object not occurring
in the range of an action i, should remain unchanged. Hereyno(P;) is a
shorthand for the union of the setsno (a) with a € P;.

For arbitrary values of < ¢’ we say tha{r’, ¢') is (directly or indirectly) generated
by execution of 7, from (7,t), denoted by(r,t) —7.p (n',t), iff the following
conditions hold:

1. if t =¢ thenn’ =7

2. ift' =t+1then(n,t) —g.p (7', t');

3. if ¢ >t + 1 then there must exists some stét€, ¢’ — 1) such that(w,t) —7, p
(7", ¢ —1)and(x",t' — 1) —q.p (7, 1).

Note that(r,t) —. p (7',t') denotes the normal execution of a normal pian
Such a normal plan execution will also be denotedbyt) —*% (7', t).

Example 3.Figure 3 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose actiof; is abnormal and generates a result that is unpredictable (
Given the qualificatio) = {a3} and the partially observed statgat time point = 0,

we predict the partial states as indicated in Figure 3, whefer, o) —5.p (73, i)

for i = 1,2,3. Note that since the value of and ofos cannot be predicted at time



t = 2, the result of actiomg and of actiomg cannot be predicted and contains only
the value ofos. [ |

4.2 Diagnosis

Suppose now that we have a (partial) observatibs(t) = (w,t) of the state of the
world at timet and an observatioobs(t') = (#’,t') attimet’ > ¢ > 0 during the exe-
cution of the planP. We would like to use these observations to infer the health states of
the actions occurring i?. Assuming a normal execution &f, we can (partially) pre-
dict the state of the world at a time poititgiven the observationbs(t): if all actions
behave normally, we predict a partial statg at time¢’ such thatbs(t)—75 (75, t').
Since we do not require observations to be made systemati¢ilty,) and O(=7;)
might only partially overlap. Therefore, if this assumption holds, the values of the ob-
jects that occur in both the predicted state and the observed state dt¢imoald match,
i.e, we should have

' =O(x")NO(r,) ﬂ-/@-
If this is not the case, the execution of some action instances must have gone wrong and
we have to determine a qualificatigp such that the predicted state derived using
agrees withr’. This is nothing else then a straight-forward extension of the diagnosis
concept in MBD to plan diagnosis (cf. [5]):

Definition 1. Let P = (A, A, <)be a plan with observationsbs(t) = (w,¢) and
obs(t') = (n',t'), wheret < t' < depth(P) and letobs(t)—{,. p(mg,, ') be a deriva-
tion assuming a qualificatio@. Then( is said to be alan diagnosisf (P, obs(t), obs(t'))
iff 7 =0 (x)no(xs,) To-

So in a plan diagnosi® the observed partial state’§ at timet’ and the predicted
state (r'Q) assuming the qualificatio® at timet’ agree upon the values of all objects
occurring in both states.

Example 4.Consider again Figure 3 and suppose that we did not know that action
az was abnormal and that we observed(0) = ((s1, s2, 3, 84),0) andobs(3) =

(s, 8%, st),3). Using the normal plan derivation relation starting wifiz(0) we will
predict a statery, at timet = 3 wherery, = (sY, 55, s4). If everything is ok, the values

of the objects predicted as well as observed at time 3 should correspond, i.e. we
should haves; = s for j = 1,3. If, for example, onlys} would differ froms7, then

we could qualifyag as abnormal, since then the predicted state at time 3 using

Q = {ac} would berg, = (s3) and this partial state agrees with the predicted state on
the value ofos. [ |

Note that for all objects D (7') N O(7, ), the qualificatior) provides arexplana-
tion for the observatiom’ made at time point’. Hence, for these objects the qualifica-
tion provides arabductive diagnosip] for the normal observations. For all observed
objects inO(7') — O(’]T/Q), no value can be predicted given the qualificatiprHence,
by declaring them to be unpredictable, possible conflicts with respect to these objects
if a normal execution of all actions is assumed, are resolved. This corresponds with the
idea of aconsistency-based diagno§is].



If @ is a plan diagnosis ofP, obs(t), obs(t')), then every supers€)’ O (@ is also
a plan diagnosis, since in that case we hﬁge C 7r’Q and thereforer’ =0(r)NO(rly)
7r’Q implies 7/ =0(x)NO(,) wb,. Clearly then, the smaller a diagnosis is, the more
values it will predict that are also actually observed in the resulting plan state. This,
like in MBD, is a reason for us to prefaminimumdiagnoses among the set of minimal
diagnoses.

But there is a caveat: a minimum diagnosis only minimizes abnormalities to ex-
plain deviations; as important however for a diagnosis might biafismation content
i.e. the exactness it provides in predicting the values of the variables occurring in the
observed state’. This means that besidesinimizingthe cardinality of abnormalities
another criterion could bmaximizingthe exactness of the similarity by maximizing
|O(7") N O(mgy)| i.e. maximizing the number of variables having the same value in the
predicted state and the observed state. Therefore, besides a minimum diagnosis we also
define the notion of amaximum informative diagnosis

Definition 2. Given plan observation&P, (, t), (7', t')), a qualification@ is said to
be aminimum plan diagnosis for every plan diagnosi€)’ it holds that|Q| < |Q’|.

Q is said to be anaximum informative plan-diagnosi§for all plan diagnoses)*,
it holds that|O(7") N O(mg)| > [O(7") N O(7g.)|.

Note that for every maximum informative diagnogjsve haveO(r") N O(mg,) C
O(n') N O(ryy), whereobs(t)—4. p(m,t') is the partial state derivation assuming a
normal planexecution. '

Also note that every maximum informative diagnosis is a minimal diagnosis. So
both minimum plan diagnoses and maximum informative plan diagnoses are the result
of different criteria for selecting minimal diagnoses, as the following example shows:

Example 5.To illustrate the difference between minimum plan diagnosis en maximum
informative diagnosis, consider again the plan execution depicted in Figure 3. Given
obs(0) andobs(3) and a deviation in the value ef, at timet = 3, there are three
possible minimum diagnoseB; = {a; }, D2 = {a3} andD3 = {ag}. D2 and D3 are

also maximume-informative diagnoses. [ ]

5 Causes of plan-execution failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of
a plan execution and the predicted effects. The reason is that often in a plan instances
of actions do not fail independently. For example, suppose that we have a plan for car-
rying luggage from a depot to a number of waiting planes. Such a plan might contain
several instances of a drive action pertaining to the same carrier controlled by an agent.
Suppose that an instanagof some drive action (type) behaves abnormally because

of malfunctioning of the carrier. Then it is reasonable to assume that other instances
a; of the same drive action that occur in the plter a; can be predicted to behave
abnormally, too. Another possibility is that a number of instances of actions is related
the malfunctioning of amgentexecuting several actions in the plan. For example, in



the luggage example, the carrier is controlled is by a driving agent. If this agent itself is
not functioning well, all driving actions as well as loading and unloading actions might
be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being ab-
normal implies that other instances of actions must be qualified a being abnormal, too.
Minimum and information-maximum diagnosis do not take into account these depen-
dencies between action failures. Therefore, we must take into consideration the under-
lying causef a plan-execution failure.

5.1 Causal Rules

To be able to include a malfunctioning of an executing agent as a possible cause, we will
consider a plan together with its executing agent as the system to be diagnosed. Here, an
agent will be simply represented by a $&f specific health states. To identify causes

of action failures, we use a s&tof causal rulesn combination with plan diagnosis. A
causal rule is a rule that can appear in the following forms:

- (a1,q0,...,ar) — ars1, Wherek > 1and, fori = 1,2...,k+ 1, o; € Aare
action types. This type of rule relates the occurrence of a set of failed actions to the
occurrence of a failed action implied by them. The intuitive meaning of these rules
is that if during plan execution there are, foe 1,..., k, action instances; of
type «; that have been qualified as abnormal up to timthen it is inferred that
from timet¢ + 1 on all instances of actions of type,., will behave abnormally,
too.

- (hjar,a9,...,a5) — ape1, Wherek > 0, h € H is a health statéh # nor)
of the plan executing agent and, foe= 1,2....k + 1, a; € A are action types.
This type of rule relates the occurrence of an agent abnorntadityd a set of action
abnormalities occurring at timeo the inference of a failed action at time 1. The
intuitive meaning of such a rule is that if during plan execution at some tirge
t + 1 the agent operates in some abnormal health statesl, fori = 1,2,.. .k,
there are action instances of type «; that have been qualified as abnormal up to
timet, then itis inferred that from time+1 on all instances of actions of type. .1
that occur in the plan will behave abnormally, tof.k = 0, this rule establishes a
health state as a single cause for action failure.

The intuitive idea behind a causal diagnosis is to be able to explain a given plan
diagnosig by a (usually smaller) set of qualifications (caus@sjogether with some
health stateh of the agent established at timeising the set of causal rulds Using
such a pair consisting of a health state and a qualification should enable us to generate,
using the rules iRk, a set containingy.

To define the effect of applying to a set of (unique) instances of actions occurring
in a plan, we first construct the setst(R) of instance of actions with respect to given
planP = (A, A, <) as follows:

® We allow abnormal health states to be detected at the same time that abnormal action conse-
qguences are generated.



— For every ruler of the form(ay, as, ..., ar) — ars1 € R, inst(R) contains an
instance(a;, , as,, - - ., ai, ) — a;,,, Of r whenever there existsta> 0 such that
{ai,, iy, ... a5} € P<yanda;, ,, € Psy.

— For every ruler of the form(h; oy, s, ..., a) — agr1 € R, inst(R) contains
the instancesh; a;, , ai,, ..., a;) — a;,,,, whenever there existsta> 0 such
that{a;,,a;,,...,a; } C P<;anda;,,, € Psy.

For eachr € inst(R), letante(r) denote the antecedentofndhd(r) denote the
head ofr. Furthermore, letlb C {h} be a set containing an abnormal agent health state
h or be equal to the empty set (signifying a normal state of the agent) agd detA
be a qualification of instances of actions. We can now define a causal consequence of a
qualification@) and a health statdb using R as follows:

Definition 3. An instance: € A is a causal consequence of a qualificati@nc A and
the health statedb using the causal ruleg if

l.aeQor

2. there exists a rule € inst(R) such that
(a) for eacha,; € ante(r) eitherq; is a causal consequence@for a; € Ab, and
(b) a = hd(r).

The set of causal consequenceg)aising R and Ab is denoted b’z 4,(Q).

We have a simple characterization of the set of causal consequépces() of a
gualification@ and a health statdb using a set of causal rulds

Observation 1 Cg 45(Q) = Cna(inst(R) U Q U Ab).

Here,Cn 4(X) restricts the set of the set of classical consequences of a set of proposi-
tions X to the setlLit(A). To avoid cumbersome notation, we will omit the subscripts
R and Ab from the operatoC' and useC'(Q) to denote the set of consequences of a
qualification@ using a health statdb and a set of causal rulés

We say that a qualificatio@ is closed under the set of rulésand an agent health
statedb if Q = C(Q), i.e,Q is saturated under application of the rules

Proposition 1. The operatoiC satisfies the following properties:

1. (inclusion): for every® C A, Q C C(Q)
2. (idempotency): for ever® C A, C(Q) = C(C(Q))
3. (monotony): il C Q' C AthenC(Q) C C(Q")

Proof. Note thatC'(Q) = Cn(inst(R)UQ U Ab) N A. Hence, monotony and inclusion
follow immediately as a consequence of the monotony and inclusiéimoMonotony
and inclusion implyC'(Q) C C(C(Q)). To prove the reverse inclusion, I€n*(Q) =
Cn(instr(R) U Q U Ab). Then by inclusion and idempotency 6. we have

C(CQ)) =Cn*(CQ))NA C Cn*(Cn*(Q))NA=Cn"(Q)NA=C(Q)

O



Thanks to Proposition 1 we conclude that every qualification can be easily extended
to a closed sef’(Q) of qualifications. Due to the presence of causal rules, we require
every diagnosis) to be closed under the application of rules, that is, in the sequel we
restrict diagnoses to closed séls= C(Q).

Now we define a causal diagnosis as a qualificagoauch that its set of conse-
quences’(Q) constitutes a diagnosis:

Definition 4. Let P = (A, A, <) be a plan,R a set of causal rules and lebs(t) and
obs(t") be two observations with < ¢. Then a qualificatior C A is a causalAb-
diagnosis of P, obs(t), obs(t')) if C(Q) N P, is a diagnosis of P, obs(t), obs(t')).

Like we defined a minimum diagnosis, we now define two kinds of minimum causal
diagnoses: a minimum causdtdiagnosis and a minimum causdfectdiagnosis:

Definition 5. Let P = (A, A, <) be a plan anthbs(t) andobs(t') with ¢ < ¢’ be two
observations.

1. Aminimum causal set diagnodsa causal diagnosi§) such that@| < |Q’| for
every causal diagnosi@’ of P;

2. Aminimum causal effect diagnosis a causal diagnosig) such that|C'(Q)| <
|C(Q")| for every causal diagnosig’.

Maximum informative causal set and maximum informative causal effect diagnoses are
defined completely analogous to the previous definitions using standard diagnosis.

The relationships between the different diagnostic concepts we have distinguished
is partially summarized in the following proposition:

Proposition 2. Let P = (A, A, <) be a plan antbs(t) andobs(t') witht < ¢’ be two
observations.

1. |Q| < |Q'| for every minimum causal set diagnoglsand minimum closed diag-
nosisQ’ of P;

2. 1Q| < |Q'| for every minimum causal effect diagnog)sand minimum closed
diagnosis)’ of P

Proof. Both properties follow immediately from the definitions and the inclusion prop-
erty of C. O

5.2 Causal diagnoses and Prediction

Except for playing a role in establishing causaplanationf observations, (causal)
diagnoses also can play a significant role in piredictionof future results (states) of

the plan or even the attainability of the goals of the plan. First of all, we should realize
that a diagnosis can be used to enhance observed state information as follows: Suppose
thatQ is a causalb-diagnosis of a plat® based on the observationiss(t) andobs(t)

for somet < ¢/, letobs(t) —¢ ). p (q.1') and letobs(t’) = (', ¢'). SinceC(Q)

is a diagnosiss’ and, agree upon the values of all objects occurring in both states.
Therefore we can combine the information contained in both partial states by merging



them into a new partial state/, = m, LI 7’. Here, the merge' L 7> of two partial
statesr! andx? is simply defined as the partial statavherer; = ' iff 7/ is defined
for i = 1,2 and undefined else;, can be seen as the partial state that can be obtained
by direct observation at timeand by making use of previous observations and plan
information.

In the same way, we can use this information and the causal conseqU&iges

derive a prediction of the partial states derivable at titffes ¢':

Definition 6. Let @ is a causalAb-diagnosis of a planP based on the observations
(m,t) and(n’, ') wheret < ¢'. Furthermore, lebbs(t)—¢, o). p (g, t') and letobs(t') =
(7', t'). Then, for some tim& > ¢/, (", t") is the partial state predicted using and
the observations ifrg, L 7, t/)—’*C(Q);p(W"’ t").

In particular, ift” = depth(P), i.e., the plan has been executed completely, we can
predict the values of some objects that will result from execuitrand we can check
which goalsg € G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which ggadsG it holds thatr |= g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.

5.3 Complexity and implementation issues

Itis well-known that the diagnosis problem is computationally intractable. The decision
forms of both consistency-based and abductive based diagnosis are NP-hard ([2]). It is
easy to see that standard plan diagnosis has the same order of complexity. Concerning
(minimal) causal diagnoses, we can show that they are not more complex than estab-
lishing plan diagnoses if the latter problem is NP-hard. The reason is that in every case
the verification ofQ)’ being anAb-causal diagnosis is as difficult as verifying a plan
diagnosis under the assumption that theiset p(R) is polynomially bounded in the
size|| P|| of the planP.1° Also note that subset minimality (under a set of rules(R)

of a set of causes can be checked in polynomial time.

The implementation of the diagnostic process is rather straight forward (see for
instance [13]). First, we have to predict the expected result of the plan keeping of the
actions involved in establishing the value of each object. Second, we determine which
of the predicted values conflict with observed values resulting in conflict sets. Third, we
have to solve a minimal hitting set problem given the conflict sets.

6 Conclusion

We have presented a hew object-oriented model to specify plans and to apply techniques
developed for model-based agent diagnosis. We distinguished two types of diagnosis:
minimum plan diagnosis and maximum informative diagnosis to idenifjn(nimum

sets of anomalously executed actions drjchfaximum informative (w.r.t. to predicting

1 The reason is that computing consequences of Horn-theories can be achieved in a time linear
in the size ofinstp(R).



the observations) sets of anomalously executed actions. Assuming that a plan is carried
out by a single agent, anomalously executed actions can be correlated if the anomaly is
caused by some malfunctions in the agent. Therefdrgc@usal diagnoses have been
introduced and we have extended the diagnostic theory enabling the prediction of future
failure of actions.

Current work can be extended in several ways. We mention two possible extensions:

First of all, we could improve the diagnostic model of the executing agent. The
causal diagnoses are based on the assumption that the agent enters an abnormal state
at some time point and stays in that state until the agent is repaired. In our future work
we wish to extend the model such that the agent might evolve through several abnormal
states. The resulting model will be related to diagnosis in Discrete Event Systems [7,
12]. Moreover, we intend to investigate plan repair in the context of the agent’s current
(abnormal) state.

Secondly, we would like to extend the diagnostic model with sequential observa-
tions and iterative diagnoses. Here, we would like to consider the possibilities of diag-
nosing a plan if more than two subsequent observations are made, the best way to detect
errors in such cases and the construction of enhanced prediction methods.
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