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Institute of Mathematics and Informatics
Akademijos 4, Vilnius 08663, LITHUANIA

{regis, aida}@ktl.mii.lt

Abstract. A deduction-based decision procedure for a fragment of mutual be-
lief logic with quantified agent variables (MBQL) is presented. A language of
MBQL contains variables and constants for agents. The language ofMBQL is
convenient to describe properties of rational agents when the number of agents is
not known in advance. The multi-modal logicKD45n extended with restricted
occurrences of quantifiers for agent variables is a component ofMBQL. For this
logic loop-check-free sequent calculus is proposed. This calculus corresponds to
contraction-free calculus and does not require to translate sequents in a certain
normal form. Another new point of presented decision procedure is existentially
invertible separation rules. For a sequent containing occurrences of mutual belief
modality two type of loop-check can be used: for positive occurrences of mutual
belief modality loop-check can be used to find non-logical (loop-type) axioms,
and for negative ones — to establish a non-derivability criterion.

1 Introduction

Mutual belief (common knowledge) logics are multi-modal logics extended
with mutual belief (common knowledge) and everybody believes (everybody
knows) modalities. Sequent-like calculi (with analytic cut rule instead of loop-
type axioms) and Hilbert-style calculi for propositional common knowledge
logics (based on finite set of agents) are constructed in several works (see, e.g.,
[1], [4], [11]). In [6] Hilbert-style calculus for common knowledge logic with in-
finite set of agents is presented. This calculus involves some restrictions on car-
dinality of set of agents and contains rather complex axiom for everybody knows
operator. Propositional Hilbert-type calculus for mutual belief logic (based on
finite set of agents) is constructed in several works (see, e.g., [2]).

Propositional agent-based logics are often insufficient for more complex
real world situations. First-order extensions of these logics are necessary when-
ever a cardinality of an application domain and/or the number of agents are not
known in advance. In [14] it is described a rich logicLORA (Logic of Ratio-
nal Agents), based on a three-sorted first-order logic (containing variables for
agents, actions and other individuals), multi-agentBDI logic, and a dynamic



logic. In [10] a logicQLB (quantified logic for belief) with Barcan axiom con-
taining variables for agents and other individuals is presented. The same idea as
in [10] and [14], namely,use of term as an agent, is utilized in term-modal log-
ics [5]. In [13] a decision procedure for a fragment of temporal logic of belief
and actions with restricted occurrences of quantified agent and action variables
is presented.

In this paper, a fragment of mutual belief logic with quantified agent vari-
ables (MBQL) is considered. Different from [5], [10] and [14], the language of
MBQL does not contain function symbols. The aim of this paper is to present
a deduction-based decision procedure forMBQL. The presented decision pro-
cedure is based on sequent-like calculusMBQ with invertible rules (in some
sense). Separation rules is an important point of presented decision procedure.
These existentially invertible rules incorporate “bad” quantifier rules for agent
variables, the rules for everybody believes modality, and rules for belief modal-
ities. Some deduction tools similar to separation rules are used informally in
[12] for propositional (single agent)BDI logic. A decision procedure for logic
KD45n extended with restricted occurrences of quantifiers for agent variables
is another important point. For this logic loop-check-free sequent calculus is
proposed. This calculus corresponds to contraction-free sequent calculus. How-
ever, loop-check-free type sequent calculusdiffers from contraction-free se-
quent calculus. In contraction-free sequent calculus (see [3], [7]) duplication of
the main formula in the premise of a rule iseliminated at all. In loop-check-free
sequent calculus duplication of the main formula in the premise of a rule isnot
eliminatedbut applications of rules containing such duplications arerestricted.
It allows to eliminate loop-check and does not require to translate sequents in a
certain normal form as in [7]. For a sequent containing occurrences of mutual
belief modality two type of loop-check can be used: for positive occurrences of
mutual belief modality loop-check can be used to find non-logical (loop-type)
axioms, and for negative ones – to establish a non-derivability criterion.

Here a procedural approach of decidable logical calculi is used and we as-
sume that the notions of a decidable calculus and a deduction-based decision
procedure are identical.

The paper is organized as follows. In Section 2, the language and the seman-
tics of theMBQL are presented. In Section 3, auxiliary tools for the presented
decision procedure are described. In Section 4, a decision algorithm is presented
relying on the sequent calculusMBQ and some examples demonstrating the
presented algorithm are given. In Section 5, a foundation of the decision algo-
rithm is given.



2 Language and semantics ofMBQL

TheMBQL consists of the multi-modal logicKD45n (doxastic logic or weak-
S5n) extended with restricted occurrences of quantifiers for agent variables and
logic containing mutual belief and everybody believes modalities [2].

The languageof MBQL contains: (1) a set of propositional symbolsP ,
P1, . . ., Q, Q1, . . .; (2) a set of agent constantsi, i1, . . ., a1, . . . , b1, . . . , (i, il,
aj , bj ∈ {1, . . .}); (3) a set of agent variablesx, x1, . . . , y, y1, . . .; (4) a set
of belief modality of the shapeB(t), wheret is an agent term, i.e., an agent
constant or an agent variable; everybody believes modalityEB; mutual belief
modality MB; (5) logical operators:⊃, ∧, ∨, ¬, ∀, ∃.

Formula of MBQL is defined inductively as follows: every propositional
symbol is formula; ifA, B are formulas, thenA ⊃ B, A∧B, A∨B, ¬(A) are
formulas; if i is an agent,A is a formula, thenB(i)A is a formula; ifx is an
agent variable,A is a formula,Q ∈ {∀,∃}, thenQxB(x)A is a formula; ifA is
a formula, thenEB(A) and MB(A) are formulas. The formulaA is a logical
one ifA contains only logical operators and propositional symbols.

As it follows from definition of formula, we do not consider, for exam-
ple, expressions of the shape∀x∃y B(x)B(y)A, but expressions of the shape
∀xB(x)∃y B(y)A are considered.

When the formula under consideration contains occurrences of operators
EB and/orMB it is assumed that the number of agents isfinite. In this case the
formula∀xB(x)A means informally the same as the formula

∧n
i=1 B(i)A and

the formula∃xB(x)A – as the formula
∨n

i=1 B(i)A. Since the exact number
of agents is not knownin advance, in general, we use formulas with quantified
agent variables.

The formulaB(i)A means “agenti believesA”. Formal semantics of the
formula B(i)A satisfies the semantics of the logicKD45n. The formulaEB(A)
means “every agent believesA”, i.e. EB(A) ≡

∧n
i=1 B(i)A. The formula

MB(A) means: “A is mutual belief of all agents”. Therefore we use only so-
calledpublic mutual belief modality and assume that there isperfect commu-
nication between agents. The formulaMB(A) has the same meaning as the
infinite formula

∧
k≥1 EBk(A), whereEB1(A) = EB(A), and EBk(A) =

EBk−1(EB(A)), if k > 1. Infinitary nature of the modalityMB is explained
in [14]. The modalitiesMB and EB behave as modality of logicKD4. In
addition, these modalities satisfy an induction-like property:

EB(A) ∧ MB(A ⊃ EB(A)) ⊃ MB(A).
All belief modalities can be nested. For example, formulaB(i1)B(i2)P ,

whereP is a proposition “John is a good programmer”, means “agenti1 be-
lieves that agenti2 believes that John is a good programmer”. The formula



∃xB(x)∀y B(y)P , whereP means the same as above, means “some agent be-
lieves that each agent believes that John is a good programmer”.

To define the formal semantics of the formulaQxB(x)A (Q ∈ {∀,∃})
we must present an interpretation of agent variables. Such interpretation is re-
ceived by means of an assignment:V → D (agent assignment), whereV is a
set of agent variables,D is a domain of agent constants. A modelM is a pair
< I, a >, where a is an agent assignment,I is a tuple< D,St, π,R >,
whereD is a domain of agent constants;St is a set of states;π is an interpreta-
tion function of the propositional variables;R is the accessibility relations. All
these relations satisfy transitive, serial, and Euclidean properties.

The concept “formulaA is valid in M =< I, a > at the states ∈ St” (in
symbolsM, s |= A) is defined by induction on the structure of the formula of
MBQL. Let us define only the cases whenA is QxB(x)N , whereQ ∈ {∀,∃}
(other cases are defined analogously as in [2], [4], [11], [14]).

M, s |= ∀xB(x)N if and only if for every agent assignmenta′ which
differs from a at most with respect to an agent constanti, < I, a′ > |= B(i)N ;

M, s |= ∃xB(x)N if and only if for some agent assignmenta′ which dif-
fers from a at most with respect to an agent constanti, < I, a′ > |= B(i)N ;

Along with formulas we considersequents, i.e., formal expressionsA1, . . . ,
Ak → B1, . . . , Bm whereA1, . . . , Ak (B1, . . . , Bm) is a multiset of formulas.
The sequent is interpreted as the formula

∧k
i=1 Ai ⊃

∨m
j=1 Bj . A sequentS is a

logical one ifS contains only logical formulas.
Let us recall the notions of positive and negative occurrences.
A formula (or some symbol) occurspositivelyin some formulaB if it ap-

pears within the scope of no negation sign or in the scope of an even number
of the negation sign, once all the occurrences ofA ⊃ C have been replaced by
¬A∨C; in the opposite case, the formula (symbol) occursnegativelyin B. For
a sequentS =A1, . . . , Ak→B1, . . . , Bm positive and negative occurrences are
determined just like for the formula

∧k
i=1 Ai ⊃

∨m
j=1 Bj .

3 Some Auxiliary Tools of the Decision Algorithm

A presented decision procedure is based on a sequent calculus with invertible
rules. All derivations are constructed as a backward derivations. In this section,
we present the main auxiliary tools of the decision algorithm: logical calculus,
reduction and separation rules, and contraction rules.

Let (j) be any rule of a sequent calculus. Rule(j) is applied to get the con-
clusion of(j) from the premises of(j). If rule (j) is backward applied, i.e., to
get premises of(j) from the conclusion of(j) we have a “bottom-up applica-
tion of (j)” instead of “application of(j)”. The rule(j) is calledinvertible in a



sequent calculusI, if the derivability inI of the conclusion of(j) implies the
derivability in I of each premise of(j). If the rule(j) is invertible, the bottom-
up application of(j) preserves the derivability.

A decidablecalculusLog is defined by the axiom:Γ,A → ∆, A (where
A is the main formula of the axiom) and traditional invertible rules for logical
operators⊃,∨,∧,¬.

A derivation in the calculusLog is constructed as a tree using the bottom-
up applications of the rules. A derivationD is successfulif each leaf ofD is an
axiom andunsuccessfulif there exists a leaf which is not an axiom.

Let us define reduction rules by means of which a sequent is reduced to a
set of sequents in some canonical forms (see below).

Reduction rulesconsist of the following rules:

– Logical rules: all the rules of the calculusLog and the following rules:

Γ→∆, A[b/x]
Γ→∆,∀xA

(→∀) A[b/x], Γ→∆

∃xA, Γ→∆
(∃ →),

where the variablex is agent variable and agent constantb (called an eigen-
constant) does not enter the conclusion of the rules.

– Rules for mutual belief:

EB(A), EB(MB(A)), Γ → ∆

MB(A), Γ → ∆
(MB →)

Γ → ∆, EB(A); Γ → ∆, EB(MB(A))
Γ → ∆, MB(A)

(→ MB).

– Rule for everybody believes:

Γ → ∆,
∧n

i=1 B(i)A
Γ → ∆, EB(A)

(→ EB), wheren is a number of agents.

Remark 1 We do not introduce reduction rule for everybody believes operator
(corresponding to implicationEB(A) ⊃

∧n
i=1 B(i)A, wheren is a number of

agents) because it is included in separation rules (see below).

To define the separation rules some canonical forms of sequents are introduced.
A sequentS is a primarysequent, ifS is of the following shape:

Σ1,∀BΓ, EBΠ1, MB∆1 → Σ2,∃B∆, EBΠ2, MB∆2, where
– for everyi (i ∈ {1, 2}) Σi is empty or consists of logical formulas;
– ∀BΓ denotes a list∀xB(x)Γ0, B(1)Γ1, . . . , B(n)Γn, where
∀xB(x)Γ0 (denoted asΘ1 below) is empty or consists of formulas of the
shape∀xj B(xj)Mj , j ∈ {1, 2, . . .}; B(l)Γl, 1 ≤ l ≤ n, is emptyor
consists of formulas of the shapeB(l)C;



– ∃B∆ denotes a list∃xB(x)∆0, B(1)∆1, . . . , B(n)∆n, where
∃xB(x)∆0 is empty or consists of formulas of the shape∃xj B(xj)Nj ,
j ∈ {1, 2, . . .}; B(r)∆r, 1 ≤ r ≤ n, is emptyor consists of formulas of
the shapeB(r)D;

– for everyi (i ∈ {1, 2}) EBΠi ( MB∆i) is empty or consists of formulas
of the shapeEB(A) ( MB(A), correspondingly).

A sequentS is areduced primarysequent, ifS is a primary one not containing
MB∆i butΓ, ∆,Π1,Π2 may contain modalityMB.

A reduced primary sequentS is an EB-pure reduced primaryone if S is
of the following shapeΣ1,Θ1, BΓ̃ , EBΠ1 → Σ2, EBΠ2, where (1)Θ1 =
∀xB(x)Γ0; (2) BΓ̃ is empty or denotes a listB(1)Γ1, . . . , B(n)Γn such that
n is a number of agents and foreveryl (1 ≤ l ≤ n) B(l)Γl is not empty;
(3) at least one fromEBΠ1, EBΠ2 is not empty. Otherwise, the sequentS is
non-EB-pure reduced primaryone.

From the shape of the primary sequent it is easy to see that bottom-up apply-
ing logical rules each sequent can be reduced to a set of primary sequents. As
it follows from the shape of reduced primary sequent, bottom-up applying all
reduction rules each primary sequent can be reduced to a set of reduced primary
sequents.

To avoid loop-check in considered extension of the logicKD45n let us
introduce marks of two sorts and indices. The marks are used in separation
rules for modalitiesB(t) and EB. Thefirst sort markhas the shapeΥ∗ (Υ∗ ∈
{B∗(t), EB∗, MB∗}). The first sort mark is defined as follows: let a formula
A is in the sphere of action of a marked modalityΥ∗. Then an occurrence of
any modalityΥ (Υ ∈ {B(t), EB, MB}) in A is marked by the first sort
mark andΥ∗∗ = Υ∗. Both positive and negative occurrences of modalityΥ
may contain the first sort mark. Thesecond sort markhas the shapeB−(t).
Only positive occurrences of belief modalityB(t) in a sequent may contain
the second sort mark. This mark is essential to get loop-check-free derivations
in considered extension of the logicKD45n. Besides marked modalities we
use indexed formulasof the shape∃x◦ Bk(x◦)A, where∃x◦ ∈ {∅,∃x} and
x◦ = i if ∃x◦ = ∅; an indexk is empty ork ∈ {∗◦1, . . . , ∗◦m}, where∗◦ ∈
{∅, ∗}. Only positive occurrencesof formulas of the shape∃x◦ B(x◦)A in the
succedent of a sequent may contain the indices. In the indexk of the shape
∗◦l l denotes a number of bottom-up applications of a separation rule for belief
modality with the same main formula.

Let us introduce separation rule for everybody believes modalityEB. The
conclusion of this separation rule is aEB-pure reduced primary sequent, such
that logical partΣ1→Σ2 is not derivable in the calculusLog.



Separation rule (SR1) for everybody believes modalityEB:

Θ∗
1, Γ0, B∗Γ̃ , Γ̃ , EB∗Π1,Π1→A◦

Σ1,Θ1, BΓ̃ , EBΠ1→Σ2, EBΠ2, EB(A◦)
(SR1),

whereΘ1 and BΓ̃ are determined in the definition ofEB-pure reduced pri-
mary sequent;̃Γ (obtained fromBΓ̃ ) denotes a listΓ1, . . . , Γn, wheren is a
number of agents;EB(A◦) ∈ {∅, EB(A)}; if EBΠ2, EB(A◦) is empty,
thenA◦ is empty, otherwiseA◦ = A.

The formulaEB(A) in the rule(SR1) is themain formulaof this rule.
Let us introduce two separation rules for belief modalityB(t) denoted as

(SR2) and(SR3). The conclusion of these separation rules is a reduced primary
sequent, such that logical partΣ1→Σ2 is not derivable inLog.

Separation rule (SR2) for belief modality B(t):

Θ∗
1, Γ0, B∗(l)Γl, Γl, EB∗Π1,Π1→Θ2, B(r)∆r,∃x◦ Bσ(x◦)M,M

Σ1,∀BΓ, EBΠ1→Σ2,∃B∆, ∃x◦ Bk(x◦)M, EBΠ2
(SR2),

where∀BΓ , ∃B∆, andΘ1 are determined in the definition of primary sequent;
Θ2 means∃xB(x)∆0.

The formula∃x◦ Bk(x◦)M is themain formulaof (SR2); ∃x◦ ∈ {∅,∃x}.
To define an indexσ let us consider two cases.
(1) ∃x◦ = ∅, thenx◦ = i and∃x◦ Bk(x◦)M has a shapeBk(i)M . In this

casel=r= i, i.e., B(l)Γl andB(r)∆r consist of formulas of the shapeB(i)D.
The indexσ is defined in the following way. Letρ (η) be the number of negative
(positive, correspondingly) occurrences of modalitiesB(i), EB, MB in M ;
let τ0, τ1, . . . , τn, τn+1 be the number of negative occurrences of modalities
B(i), EB, MB in Γ0, Γ1, . . . , Γn,Π1, respectively, andτ = max(τ0, τ1, . . . ,
τn, τn+1), ρ ′ = max(ρ − η, τ − η). Thenk ∈ {∗◦0, . . . , ∗◦ρ ′} (where∗◦ ∈
{∅, ∗}), at the very beginningk is empty and is treated as∗◦0. The indexσ is
defined as follows: ifk = ∗◦l, l ∈ {0, . . . , ρ ′} andl < ρ ′ thenσ = ∗◦(l + 1);
otherwise, i.e., ifk=∗◦l andl=ρ ′, thenσ=−.

(2) ∃x◦=∃x. In this case all pairs consisting fromB(l)Γl (1 ≤ l ≤ n) and
B(r)∆r (1 ≤ r ≤ n) must be reset. The indexσ is defined in the same way
as in the case (1) replacing a modalityB(i) with B(t), wheret is any agent
variable or any agent constant.

The separation rule(SR2) corresponds to transitivity and Euclidean prop-
erties of belief modality.

Separation rule (SR3) for belief modality B(t):

Θ∗
1, Γ0, B∗(l)Γl, Γl, EB∗Π1,Π1→

Σ1,∀BΓ, EBΠ1→Σ2,∃B∆, EBΠ2
(SR3),



where∀BΓ , ∃B∆, andΘ1 are the same as in the rule(SR2).
The rule(SR3) corresponds to the serial property of belief modality.
During the reduction to primary and reduced primary sequents the following

contraction rules are used.
Contraction rules. The rule allowing to replaceA,A1 with A (whereA

andA1 coincide or are congruent ones [9]) is an ordinary contraction rule. The
rules allowing to replaceBk(t)A, B◦(t)A, where◦ ∈ {∅, ∗}, with Bk(t)A,
to replaceBk(t)A, B−(t)A with B−(t)A, and to replaceΥ∗A, ΥA, where
Υ ∈ {B(t), EB, MB}, with Υ∗A are marked contraction rules. Contraction
rules are backward appliedimplicitly (together with other rules).

Some examples in next section demonstrate an application of the separation
rules and the use of the marks/indexes.

4 Description of Decision Algorithm

In presented decision procedure for the extension of the logicKD45n loop-
check-free sequent calculus is proposed. Such type calculi correspond to contrac-
tion-free calculus for modal logic. For a sequent containing different occur-
rences of mutual belief modalityMB two kind of loop-check (saturation) are
used: for positive occurrences of mutual belief modality loop-check is used to
find non-logical (loop-type) axioms, and for negative ones loop-check (called
degenerate saturation) is used to establish a non-derivability criterion.

So, along with the logical axioms, we use non-logical (loop-type) axioms (as
in other works on temporal and agent-based logics with induction axioms, see,
e.g., [12], [13]). First we define parametrically identical formulas and sequents.
Namely, formulasA andA′ are called parametrically identical ones (in symbols
A ≈ A′) if either A = A′, or A andA′ are congruent [9], or differ only by
the corresponding occurrences of eigen-constants of the rules(→ ∀), (∃ →);
moreover , the occurrences of modalityΥ and marked modalityΥ∗, whereΥ ∈
{B(t), EB, MB}, are treated as coinciding. SequentsS = A1, . . . , Ak →
Ak+1, . . . , Ak+m andS′ = A′

1, . . . , A
′
k → A′

k+1, . . . , A
′
k+m are parametrically

identical (in symbolsS ≈ S′), if ∀j (1 ≤ j ≤ k + m) formulasAj andA′
j are

parametrically identical ones. We say that a sequentS = Γ → ∆ subsumes a
sequentS′ = Π,Γ ′ → ∆′, Θ (in symbolsS � S′) if Γ → ∆ ≈ Γ ′ → ∆′ (in
special case,S =S′). A sequentS′ is subsumedby S.

To obtain a negative criterion of derivability for the extension of the logic
KD45n let us introduce a notion ofb-final sequent.

A primary sequent of the shapeΣ1,∀B∗Γ, EB∗Π1, MB∗∆1 → Σ2,
∃B−∆ (in special case,Σ2,∃B−∆ is empty), such that logical part of this se-
quent, namely,Σ1→Σ2 is not derivable in the calculusLog, is b-final sequent.



Let D be a derivation in some calculus andi be a branch inD. The primary
sequentS = Γ → ∆ from the branchi is asaturatedsequent if, in the branchi
aboveS, there exists a subsumed byS primary sequentS′, i.e.,S � S′.

Let S = Σ1,∀BΓ, EBΠ1, MB∆1 → Σ2, EBΠ2 be a saturated primary
sequent in a derivationD. ThenS is degenerated saturatedone if in D there
exists a subsumed byS primary sequentS′ of the shapeΣ′

1,∀B∗Γ ′, EB∗Π ′
1,

MB∗∆′
1 → Σ′

2, EB◦Π ′
2 (◦ ∈ {∅, ∗}) such that (1) logical part ofS′ is not

derivable in the calculusLog; (2) Π ′
2 does not contain any positive occurrence

of modality MB.
A saturated primary sequentS is MB- saturatedif S = Γ → ∆, MB(A).

Sequents subsumed by anMB-saturated sequent will be used as non-logical
axioms.

The decision algorithm for an arbitrary sequent is realized by means of a
calculus for mutual belief (MBQ).

CalculusMBQ:
A calculusMBQ is obtained from the calculusLog adding the separation

rules(SRl) (1 ≤ l ≤ 3), the reduction rules, contraction rules, and non-logical
axioms of the shapeΓ → ∆, MB(A).

A derivationD in the calculusMBQ is anordered derivation, if it consists
of several levels and each level consists of bottom-up applications of reduction
rules. In this derivation at each level, when a set consisting of only reduced pri-
mary sequents is received, allpossiblebottom-up applications of the separation
rules to every reduced primary sequent are realized. Each bottom-up application
of the separation rules provides a possibility to construct adifferent(in general)
ordered derivationDk (k ≥ 1). Let in the levelj it be possible to bottom-up
apply the rule(SR2) using as the main formula of this rule several formulas,
namely,∃x◦1B(x◦1)M1, . . . ,∃x◦rB(x◦r)Mr. In this case as the main formula of
(SR2) we choose a such formula∃x◦i B(x◦i )Mi which was previously used as
the main formula of this rule in the levelj − k (k ≥ 1). A such tactic of
construction of an ordered derivation is calleddirectedone. To eliminate redun-
dancy from constructed ordered derivation in each level we do not consider (for
a while) a sequent which is subsumed by some sequent in the level.

The ordered derivationDk is a successful one, ifeachleaf ofDk ends with
axiom (either logical or non-logical). The notion of logical axiom is obvious.
Let us consider the notion of non-logical axiom in more detail. Let in ordered
derivationD there exists reduction of a primary sequent of the shapeS = Γ →
∆, MB(A) to a set of primary sequentsS1, . . . , Sp, where sequentSk (1 ≤
k ≤ p) has the shapeΠ,Γ ′

k → Θ,∆′
k, MB(A′) and is such thatΓ → ∆ ≈

Γ ′
k → ∆′

k andA ≈ A′. The sequentS belongs toi-th level ofD andSk belongs
to (i + l)-th level ofD (l ≥ 1). Then the sequentsSk are considered as non-



logical (MB-loop-type) axioms ofMBQ. In Section 5 it will be justified that
non-logical axioms are founded automatically and consist of some parts of an
end sequent ofD.

If thereexistsan ordered derivationD of sequentS such that in a leaf ofeach
branchi of D there is either a logical axiom, or a non-logical axiom, then in both
these casesMBQ ` S (positive criterion of termination of the procedure). If in
all possible ordered derivationsDk of a sequentS thereexistsa branch having
a sequent which is either non-derivable inLog or degenerated saturated one or
b-final one, thenMBQ 0 S (negative criterion of termination of the procedure).

In the next section it will be justify that for any sequent a process of con-
struction of an ordered derivation always terminates and proceeds automatically.

Bottom-up application of the reduction rule(→ MB) is induction-freeone,
if the left premiseS′ of this rule has a shapeΓ → ∆, EB(A), where∆, A do
not contain positive occurrences of modalityMB. If MBQ `D S′ andD does
not contain non-logical axioms then this bottom-up application issuccessful.

From the notion of an ordered derivation inMBQ we get the following

Lemma 1 (derivability criterion in MBQ) Let S be an arbitrary sequent.
ThenMBQ `D S if and only if each induction-free bottom-up application
of the reduction rule(→ MB) in D is successful.

Let (SR+
2 ) be the rule obtained from the rule(SR2) changing a definition of

the indexσ. Namely, let∃x◦ Bk(x◦)M be the main formula of the rule(SR+
2 ),

andk ∈ {∗◦0, ∗◦1, . . .} (where∗◦ ∈ {∅, ∗}), at the very beginningk is empty
and is treated as∗◦0; if k = ∗◦l thenσ = ∗◦(l + 1). Let a calculusMBQ+ is
obtained fromMBQ adding the rule(SR+

2 ). An application of the rule(SR+
2 )

in MBQ+ is degenerate ifσ ≥ ρ ′ +1, whereρ ′ is determined in the same way
as in the rule(SR2).

Analogously as in [13] using induction on number of the degenerate appli-
cation of the rule(SR+

2 ) we can prove

Lemma 2 If MBQ+ ` S thenMBQ ` S.

From Lemma 2 and relying on directed tactic in construction of ordered
derivation we get

Lemma 3 Let D be an ordered derivation inMBQ. LetΣ1,∀BΓ, EBΠ1→
Σ2,∃B∆,∃x◦ Bk(x◦)M, EBΠ2 be a conclusion of an application of the rule
(SR2) in D. Then the same positive occurrence of the formula∃x◦ Bk(x◦)M
may be the main formula of applications of the separation rule(SR2) in D at
mostρ ′ + 1 time, whereρ ′ is defined in the rule(SR2).



Let us demonstrate saturation-free ordered derivations inMBQ, i.e., all
branches of constructed ordered derivations end with logical axioms.

Example 1 (a) Let S = B(1)P → B(1)B(1)(P ∨ Q). We can bottom-up
apply (SR2) or (SR3) to S. Bottom-up applying(SR3) to S we getb-final
sequentB∗(1)P, P → . Let us consider the possibility to bottom-up apply
(SR2) to S. For S we haveρ = 0, η = 1, τ = 0, and ρ ′ = 0. There-
fore bottom-up applying(SR2) to S we getσ = − andS1 = B∗(1)P, P →
B−(1)B(1)(P ∨Q), B(1)(P ∨Q). Again, we can bottom-up apply(SR2) or
(SR3) to S1. Let us apply(SR2). We can bottom-up apply(SR2) to S1 only
with B(1)(P ∨Q) as the main formula. Since forS1 ρ ′ = 0, we getσ = − and
S2 = B∗(1)P, P → B−(1)B(1)(P ∨Q), B−(1)(P ∨Q), P ∨Q. Bottom-up
applying(→ ∨) to S2 we get an axiom. ThereforeMBQ ` S.

(b) LetS = B(1)EB(P ) → B(1)(P ∨ Q), i.e., forS ρ = 0, η = 0, τ = 1,
andρ ′ = 1. Therefore bottom-up applying(SR2) to S we getσ = 1 andS1 =
B∗(1)EB∗(P ), EB(P ) → B1(1)(P ∨Q), (P ∨Q). Since forS1 ρ ′=1 and
k=1, bottom-up applying(SR2) to S1 we getS2 = B∗(1)EB∗(P ), EB∗(P ),
P → B−(1)(P ∨Q), P ∨Q. Bottom-up applying(→ ∨) to S2 we get an axiom.
ThereforeMBQ ` S.

(c) Let S = B(1)EB(B(1)P ) → B(1)A, whereA = ¬B(2)Q ∨ P .
For S we haveρ = 0, η = 0, τ = 2, and ρ ′ = 2. Therefore bottom-up apply-
ing (SR2) to S we getσ = 1 and, after applying(→ ∨), (→ ¬), we get
S1 = B∗(1)EB∗(B∗(1)P ), EB(B(1)P ), B(2)Q → B1(1)A∗, P . Since for
S1 ρ ′ = 2, bottom-up applying(SR2) and (→ ∨), (→ ¬) from S1 we get
σ = 2 and S2 = B∗(1)EB∗(B∗(1)P ), EB∗(B∗(1)P ), B(1)P, B(2)Q →
B2(1)A,P . For S2 we get againρ ′ = 2. Bottom-up applying(SR2), (→ ∨),
(→ ¬) from S2 we getσ = − and S3 = B∗(1)EB∗(B∗(1)P ), EB∗(B∗(1)
P ), B∗(1)P, P, B(2)Q → B−(1)A,P . SinceS3 is an axiom,MBQ ` S.

(d) Let {1, . . . , n} be a set of agent constants andS = B(1)P1,
. . . B(n)Pn → EB(

∨n
i=1 Pi). Bottom-up applying(SR1) and then(→ ∨)

we get an axiom. ThereforeMBQ ` S.

(e) Let{1, 2} be a set of agent constants andS = B(1)P → EB(P ∨
¬B(2)P ). Bottom-up applying(→ EB), (→ ∧) from S we get reduced pri-
mary sequentsS1 = B(1)P → B(1)(P ∨ ¬B(2)P ) and S2 = B(1)P →
B(2)(P ∨ ¬B(2)P ). Bottom-up applying(SR2) and (→ ∨) from S1 we get
an axiom. Bottom-up applying(SR2) and (→ ∨), (→ ¬) from S2 we get
S3 = B(2)P → B1(2)(P ∨ ¬B(2)P ), P . Bottom-up applying(SR2) and
(→ ∨) fromS3 we get an axiom. ThereforeMBQ ` S.



Let us demonstrate negative criterion of termination, i.e., construction of or-
dered derivations inMBQ containing a branch which ends withb-final sequent
or containing a degenerated saturated primary sequent.

Example 2 (a) LetS =→ ∃xB(x)A, whereA = ¬EB(P ) ∨ Q, i.e., forS
ρ = 1 andρ ′ = 1. Bottom-up applying(SR2), and then(→ ∨), (→ ¬) from
S we getS1 = EB(P ) → ∃xB1(x)A,Q. Since forS1 k =ρ ′=1, bottom-up
applying(SR2), and then(→ ∨), (→ ¬) fromS1 we getS2 = EB∗(P ), P →
∃xB−(x)A,Q. S2 is not an axiom and isb-final. ThereforeMBQ 0 S.

(b) Let S = EB(P ), MB(A) → EB(Q), whereA = P ⊃ ¬EB(Q).
Bottom-up applying(MB →) to S we getS1 = EB(P ), EB(MB(A)),
EB(A) → EB(Q). Bottom-up applying(SR1) toS1 we getS2 = EB∗(P ), P,
EB∗(A), A, EB∗(MB∗(A)), MB∗(A) → Q. Bottom-up applying(⊃→),
(¬ →) from S2 we get an axiom (withP as the main formula) andS3 =
EB∗(P ), P, EB∗(A), EB∗(MB∗(A)), MB∗(A) → EB∗(Q), Q. SinceS �
S3, from the shape ofS3 we get thatS is a degenerated saturated sequent. There-
foreMBQ 0 S.

LetS′ be a sequent obtained from the sequentS replacing the formulaA by
P ⊃¬B(1)Q. Then we get derivation ending with ab-final sequent.

Let us demonstrate a derivation inMBQ with MB-saturation, i.e., a con-
structed ordered derivation contains non-logical axioms along with logical ones.

Example 3 Let S be EB(∀xB(x)P ), MB(A) → MB(∃xB(x)P ), where
A = ∃xB(x)P ⊃ EB(∀xB(x)P ). The sequentS is a modified version of
induction axiom for modalityMB.
Bottom-up applying(→ MB) toS we get two sequentsS1 = EB(∀xB(x)P ),
MB(A) → EB(∃xB(x)P ) and S2 = EB(∀xB(x)P ), MB(A) → EB
(MB(∃xB(x)P )). Bottom-up applying(MB →) to S1 we get the sequent
S′

1 = EB(∀xB(x)P, EB(A), EB(MB(A)) → EB(∃xB(x)P ). Bottom-
up applying(SR1) toS′

1 we get the sequentS′′
1 = ∀xB(x)P,A, MB(A),∆ →

∃xB(x)P , where∆ = EB∗(∀xB∗(x)P ), EB∗(A), EB∗(MB∗(A)). Bottom-
up applying(⊃→) from S′′

1 we get sequentsS11 = ∀xB(x)P, MB(A),∆ →
∃xB(x)P andS12 = ∀xB(x)P, EB(∀xB(x)P ), MB(A),∆ → ∃xB(x)P .
SinceS11 � S12, at first we consider the sequentS11. Bottom-up applying
(MB →) from S11 we getS′

11 = ∀xB(x)P,∆ → ∃xB(x)P . Bottom-up ap-
plying (SR2) to S′

11 we get an axiom withP as the main formula. Therefore
MBQ ` S11. SinceS11 � S12, MBQ ` S12 as well.

Now let us consider the sequentS2. Bottom-up applying(MB →) to S2 we
getS′

2 = EB(∀xB(x)P ), EB(A), EB(MB(A)) → EB(MB(∃xB(x)P )).
Bottom-up applying(SR1) to S′

2 we get the sequentS′′
2 = ∀xB(x)P,A, MB



(A),∆ → MB(∃xB(x)P ). Bottom-up applying(⊃→) to S′′
2 we get two

sequentsS21 = ∀xB(x)P, MB(A),∆ → ∃xB(x)P, MB(∃xB(x)P ) and
S22 = ∀xB(x)P, EB(∀xB(x)P ), MB(A),∆ → MB(∃xB(x)P ). Since
S � S22, S is MB-saturated sequent. Now let us consider the sequentS21.
Bottom-up applying(→ MB) and then(MB →), (SR2) in both branches of
(→ MB) we get an axiom withP as the main formula. ThereforeMBQ ` S.

5 Foundation of Presented Decision Procedure

To justify the presented decision procedure, we must found: (1) termination of
the procedure, (2) invertibility of reduction and contraction rules, and existential
invertibility (see below) of the separation rules inMBQ and (3) MB-type
saturated sequents as non-logical axioms. The termination will be founded by
means of finiteness of the so-calledR-subformulas of primary sequents which
are generated during the construction of an ordered derivation. Let us define the
notion ofR-subformulas of a sequent.

Let S be a primary sequent andC be a formula enteringS. A set of R-
subformulas ofC from S is denoted asRSub(C) and defined inductively.

1. RSub(P ) = ∅, whereP is a logical formula.
2. RSub(EB(A)) = RSub(A).
3. RSub(¬A) = RSub(A).
4. RSub(A�B) = {RSub(A)} ∪ {RSub(B)}, where� ∈ {⊃,∧,∨}.
5. RSub(B(i)A) = {B(i)A} ∪ {RSub(A)}.
6. RSub(MB(A))={EB(MB(A))}∪{RSub(EB(A))}.
7. RSub(QxB(x)A) = RSub(B(c)A), whereQ is ∀(∃) andQ occurs

positively (negatively) inS, x is an agent variable andc is a new agent constant.
8. RSub(QxB(x)A) = RSub(A), whereQ is ∃(∀) and Q occurs po-

sitively (negatively) inS.
A set ofR-subformulas of a sequentS = A1, . . . , Ak → Ak+1, . . . , Ak+m

is denoted byRSub(S) and defined asRSub(S) = ∪k+m
i=1 RSub(Ai). R∗Sub(S)

denotes a set obtained fromRSub(S) by merging parametrically identical for-
mulas.

From definition ofR∗Sub(S) we get that the setR∗Sub(S) is finite. This
fact (along with Lemma 3) is crucial to obtain termination of presented proce-
dure.

Analyzing the construction of an ordered derivation inMBQ we get that
the presented decision procedure is exponential-time andPSPACE-complete,
i.e., during the construction of an ordered derivation of a sequentS we generate
the primary sequents the length of which can be restricted by some polynomial
depending onR∗Sub(S).



To justify the invertibility of reduction and contraction rules and the existen-
tial invertibility of the separation rules inMBQ an infinitary calculusMBQω is
introduced.MBQω is obtained fromMBQ by dropping the non-logical axiom,
marks and indices in separation rules and replacing the reduction rule(→ MB)
by following infinitary rule:

Γ → ∆, EB(A); . . . ;Γ → ∆, EBk(A); . . .
Γ → ∆, MB(A)

(→ MBω),

k ∈ {1, . . .}; EB1(A) = EB(A), EBk(A) = EB(EBk−1(A)), k > 1.
Using induction onO(D), whereO(D) is the height of a derivationD [13]

of the conclusion of a reduction rule inMBQω, we can prove an invertibility of
reduction rules (including(→ MBω)) in MBQω.

Using reduction rules it is possible to construct a reduction of sequentS to
a set{S1, . . . , Sm}, whereSj (1 ≤ j ≤ m) is a primary (reduced primary)
sequent automatically. Using the invertibility of reduction rules we get that if
MBQω ` S thenMBQω ` Sj , j ∈ {1, . . . ,m}.

It is easy to see that the separation rules(SRl) (l ∈ {1, 2, 3}) are not in-
vertible in the usual way but they are existential invertible. The separation rule
(SRl) (l ∈ {1, 2, 3}) is existential invertibleif from derivability of the con-
clusion of the separation rule(SRl) follows that there exists at least one rule
(SRl) (1 ≤ l ≤ 3) such that a premise of this rule is derivable. It is obvi-
ous that, in contrast to deterministic usual invertibility, existential invertibility is
non-deterministic.

Using double induction on< k(S),O(D) >, wherek(S) is a number of
positive occurrences of modalityMB in an end-sequent of the derivationD,
we can prove an existential invertibility of separation rules.

Lemma 4 (existential invertibility of separation rules) LetS be a reduced pri-
mary sequent, i.e.,S = Σ1,∀BΓ, EBΠ1 → Σ2,∃B∆, EBΠ2, such that
MBQω ` S andLog 0 Σ1→Σ2. Then either

– S is an EB-pure reduced primary sequent and there exists a sequentS1

such thatMBQω ` S1 = Θ∗
1, Γ0, B∗Γ̃ , Γ̃ , EB∗Π1,Π1 →A◦, where the

sequentS1 is defined in the formulation of the rule(SR1), or
– there exists a formula∃x◦ Bk(x◦)M from∃B∆, such thatMBQω ` S2 =

Θ∗
1, Γ0, B∗(l)Γl, Γl, EB∗Π1,Π1 → Θ2, B(r)∆r,∃x◦ Bσ(x◦)M,M ,

where the sequentS2 and the indexσ is defined in the formulation of the
rule (SR2), or

– there existsl ≥ 0 such thatMBQω ` S3 =Θ∗
1, Γ0, B(l)∗Γl, Γl, EB∗Π1,

Π1→, where the sequentS3 is defined in the formulation of the rule(SR3).



Using invertibility of the reduction and separation rules we can prove that
the contraction rules are invertible inMBQω

Using Scḧutte method (analogously as in [8]) we get

Theorem 1 (soundness andω-completeness ofMBQω) Let S be a sequent.
Then∀M |= S ⇐⇒ MBQω ` S. The cut rule is admissible inMBQω.

From the fact thatMBQω ` MB(A) ≡ EB(A) ∧ EB(MB(A)) and
admissibility of cut inMBQω we get that the rule(→ MB) is admissible and
invertible inMBQω.

To get an equivalence between calculiMBQ and MBQω we introduce
invariant calculusINMBQ. To define this calculus let us introduce some aux-
iliary notions. LetMBQ `D S. Then a set ofMB-saturated sequents, i.e., the
sequents of the shapeΓ → ∆, MB(A), in D is denoted bySat{S}. Let us de-
composeSat{S} into a set of setsSati{S} such that (1)Sat{S} = ∪

i
Sati{S};

(2) ∀ij(Sati{S} ∩ Satj{S}) = ∅; (3) if S1, S2 ∈ Sati{S}, thenS1, S2 have
a common succedent member of the shapeMB(A), which is called anucleus
of Sati{S}. Every setSati{S} is a component of decomposition ofSat{S}.

An invariant calculusINMBQ is obtained from the calculusMBQ re-
placing the non-logical axioms by the following invariant rule:

Γ → ∆, I; I → EB(I); I → EB(A)
Γ → ∆, MB(A)

(→ MBI),

where the invariant formulaI is constructed automatically.
The rule(→ MBI) satisfies the following conditions:

– the conclusion of(→ MBI), i.e., the sequentS′ = Γ → ∆, MB(A) is
such thatS′ ∈ Sati{S} andSati{S} is {Σi1 → Πi1, MB(A); . . . ;Σin →
Πin, MB(A)}, where MB(A) is the nucleus ofSati{S}, i.e., S′ is an
MB-saturated sequent from a derivation of a sequentS in MBQ;

– I =
n
∨

j=1
((∃Σij)∧ ∧ ¬(∀Πij)∨; let Π be any set of formulas of the shape

B(i1)C1, . . . , B(im)Cm, whereil (1 ≤ l ≤ m)) is an agent eigen-constant;
then QΠ = Qx1 B(x1)C1, . . . , Qxm B(xm)Cm, Q ∈ {∀,∃} (therefore
all the eigen-constants are correspondingly bounded);Γ∧(Γ∨) means the
conjunction (disjunction, respectively) of formulas fromΓ .

To prove that fromMBQ ` S follows INMBQ ` S, a derivation of each
MB-saturated sequent inINMBQ must be constructed.

Example 4 LetS be the same sequent as in Example 3, i.e., has the shape
EB(∀xB(x)P ), MB(A) → MB(∃xB(x)P ), whereA = ∃xB(x)P ⊃



EB(∀xB(x)P ). From Example 3 it follows thatS is a MB-saturated se-
quent. From definition of the invariant formulaI we getI = EB(∀xB(x)P ) ∧
MB(A). It is easy to verify thatLog ` EB(∀xB(x)P ), MB(A) → I (1);

INMBQ ` I→ EB(I); (2) INMBQ ` I→ EB(A) (3).
Applying(→ MBI) to (1), (2) and (3) we getINMBQ ` S.

Analogously as in [13] we get
MBQ ` S ⇐⇒ INMBQ ` S ⇐⇒ MBQω ` S (∗).

From (*) we get that all reduction rules and contraction rules are invertible in
MBQ and the separation rules are existentially invertible inMBQ.
From Theorem 1 and (*) follows thatMBQ is soundandcomplete.
Using these facts, finiteness ofR∗Sub(S), and Lemma 3 we get the following

Theorem 2 Let S be an arbitrary sequent. Then one can automatically con-
struct a successful or unsuccessful ordered derivationD of the sequentS in
MBQ such thatD always terminates.
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