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Abstract. A deduction-based decision procedure for a fragment of mutual be-
lief logic with quantified agent variabled{BQL) is presented. A language of

M BQL contains variables and constants for agents. The languageR®) L is
convenient to describe properties of rational agents when the number of agents is
not known in advance. The multi-modal logi€ D45,, extended with restricted
occurrences of quantifiers for agent variables is a componevit®é) L. For this

logic loop-check-free sequent calculus is proposed. This calculus corresponds to
contraction-free calculus and does not require to translate sequents in a certain
normal form. Another new point of presented decision procedure is existentially
invertible separation rules. For a sequent containing occurrences of mutual belief
modality two type of loop-check can be used: for positive occurrences of mutual
belief modality loop-check can be used to find non-logical (loop-type) axioms,
and for negative ones — to establish a non-derivability criterion.

1 Introduction

Mutual belief (common knowledge) logics are multi-modal logics extended
with mutual belief (common knowledge) and everybody believes (everybody
knows) modalities. Sequent-like calculi (with analytic cut rule instead of loop-
type axioms) and Hilbert-style calculi for propositional common knowledge
logics (based on finite set of agents) are constructed in several works (see, e.g.,
[1], [4], [11]). In [6] Hilbert-style calculus for common knowledge logic with in-
finite set of agents is presented. This calculus involves some restrictions on car-
dinality of set of agents and contains rather complex axiom for everybody knows
operator. Propositional Hilbert-type calculus for mutual belief logic (based on
finite set of agents) is constructed in several works (see, e.g., [2]).

Propositional agent-based logics are often insufficient for more complex
real world situations. First-order extensions of these logics are necessary when-
ever a cardinality of an application domain and/or the number of agents are not
known in advance. In [14] it is described a rich lodi© RA (Logic of Ratio-
nal Agents), based on a three-sorted first-order logic (containing variables for
agents, actions and other individuals), multi-agBi?/ logic, and a dynamic



logic. In [10] a logic@ L B (quantified logic for belief) with Barcan axiom con-
taining variables for agents and other individuals is presented. The same idea as
in [10] and [14], namelyuse of term as an ageris utilized in term-modal log-

ics [5]. In [13] a decision procedure for a fragment of temporal logic of belief
and actions with restricted occurrences of quantified agent and action variables
is presented.

In this paper, a fragment of mutual belief logic with quantified agent vari-
ables (/ BQL) is considered. Different from [5], [10] and [14], the language of
M BQL does not contain function symbols. The aim of this paper is to present
a deduction-based decision procedurebB() L. The presented decision pro-
cedure is based on sequent-like calculd$3() with invertible rules (in some
sense). Separation rules is an important point of presented decision procedure.
These existentially invertible rules incorporate “bad” quantifier rules for agent
variables, the rules for everybody believes modality, and rules for belief modal-
ities. Some deduction tools similar to separation rules are used informally in
[12] for propositional (single agenB D1 logic. A decision procedure for logic
K D45, extended with restricted occurrences of quantifiers for agent variables
is another important point. For this logic loop-check-free sequent calculus is
proposed. This calculus corresponds to contraction-free sequent calculus. How-
ever, loop-check-free type sequent calcudlifers from contraction-free se-
quent calculus. In contraction-free sequent calculus (see [3], [7]) duplication of
the main formula in the premise of a rulesbminated at all In loop-check-free
sequent calculus duplication of the main formula in the premise of a ruletis
eliminatedbut applications of rules containing such duplicationsrastricted
It allows to eliminate loop-check and does not require to translate sequents in a
certain normal form as in [7]. For a sequent containing occurrences of mutual
belief modality two type of loop-check can be used: for positive occurrences of
mutual belief modality loop-check can be used to find non-logical (loop-type)
axioms, and for negative ones — to establish a non-derivability criterion.

Here a procedural approach of decidable logical calculi is used and we as-
sume that the notions of a decidable calculus and a deduction-based decision
procedure are identical.

The paper is organized as follows. In Section 2, the language and the seman-
tics of theM BQL are presented. In Section 3, auxiliary tools for the presented
decision procedure are described. In Section 4, a decision algorithm is presented
relying on the sequent calculud BQ) and some examples demonstrating the
presented algorithm are given. In Section 5, a foundation of the decision algo-
rithm is given.



2 Language and semantics oM BQL

The M BQL consists of the multi-modal logi&” D45,, (doxastic logic or weak-
S5,,) extended with restricted occurrences of quantifiers for agent variables and
logic containing mutual belief and everybody believes modalities [2].

The languageof M BQL contains: (1) a set of propositional symbdbs
Py, ..., Q,Q1, ... (2) aset of agent constantsiy, ..., ai,...,b1,..., (4,1,
a;j,b; € {1,...}); (3) a set of agent variables z1,...,y,y1,...; (4) a set
of belief modality of the shapd(t), wheret is an agent term, i.e., an agent
constant or an agent variable; everybody believes mod&liB; mutual belief
modality MB; (5) logical operatorsd, A, V, -, V, 3.

Formulaof M BQL is defined inductively as follows: every propositional
symbol is formula; ifA, B are formulas, thedl O B, AA B, AV B, ~(A) are
formulas; ifi is an agentA is a formula, thenB(i) A is a formula; ifx is an
agent variabled is a formula,@ € {V,3}, thenQz B(z)A is a formula; ifA is
a formula, thenEB(A) and MB(A) are formulas. The formuld is alogical
one if A contains only logical operators and propositional symbols.

As it follows from definition of formula, we do not consider, for exam-
ple, expressions of the shapedy B(z) B(y)A, but expressions of the shape
Vz B(z)3y B(y) A are considered.

When the formula under consideration contains occurrences of operators
EB and/orMB it is assumed that the number of agentfrige. In this case the
formulaVz B(z) A means informally the same as the formpd, B(i)A and
the formuladz B(z)A — as the formuld/?’, B(i)A. Since the exact number
of agents is not knowm advancein general, we use formulas with quantified
agent variables.

The formulaB(i) A means “agent believesA”. Formal semantics of the
formula B(i) A satisfies the semantics of the lodid45,,. The formulaEB(A)
means “every agent believet’, i.e. EB(A) = A, B(i)A. The formula
MB(A) means: 4 is mutual belief of all agents”. Therefore we use only so-
called public mutual belief modality and assume that ther@ésfect commu-
nication between agents. The formulsIB(A) has the same meaning as the
infinite formula\,~, EB*(A), where EB!(4) = EB(A), and EB*(A) =
EB*1(EB(A)), if k > 1. Infinitary nature of the modalityMB is explained
in [14]. The modalitiesMB and EB behave as modality of logi& D4. In
addition, these modalities satisfy an induction-like property:

EB(A) A MB(A D EB(A)) D MB(A).

All belief modalities can be nested. For example, form#éi, ) B(i2) P,
where P is a proposition “John is a good programmer”, means “agee-
lieves that ageni; believes that John is a good programmer”. The formula



Jz B(x)Vy B(y) P, whereP means the same as above, means “some agent be-
lieves that each agent believes that John is a good programmer”.

To define the formal semantics of the formula B(x)A (Q € {V,3})
we must present an interpretation of agent variables. Such interpretation is re-
ceived by means of an assignmeVit— D (agent assignment), whelé is a
set of agent variabled) is a domain of agent constants. A modélis a pair
< I,a >, wherea is an agent assignment, is a tuple< D, St,7,R >,
whereD is a domain of agent constants, is a set of statest is an interpreta-
tion function of the propositional variableR,; is the accessibility relations. All
these relations satisfy transitive, serial, and Euclidean properties.

The concept “formul& is valid in M =< 7, a > at the state € St” (in
symbolsM, s = A) is defined by induction on the structure of the formula of
MBQL. Let us define only the cases whdris Qx B(z) N, where@ € {V, 3}
(other cases are defined analogously as in [2], [4], [11], [14]).

M,s | VaB(z)N if and only if for every agent assignment which
differs from a at most with respect to an agent constart Z, a’ > = B(i)N;

M, s = 3z B(x)N if and only if for some agent assignmeat which dif-
fers from a at most with respect to an agent constart Z, a’ > = B(i)N;

Along with formulas we considesequentsi.e., formal expressiond,, . . .,

A, — By,...,B,, whereA,..., A, (By,...,B,) is a multiset of formulas.
The sequent is interpreted as the formp\(a, A; O Vi Bj. AsequentSis a
logical one if.S contains only logical formulas.

Let us recall the notions of positive and negative occurrences.

A formula (or some symbol) occupositivelyin some formulaB if it ap-
pears within the scope of no negation sign or in the scope of an even number
of the negation sign, once all the occurrencesiad C have been replaced by
= AV C;in the opposite case, the formula (symbol) ocawegativelyin B. For
asequens=A44,...,A,— By, ..., By positive and negative occurrences are
determined just like for the formuld?, A; > \/7") B;.

3 Some Auxiliary Tools of the Decision Algorithm

A presented decision procedure is based on a sequent calculus with invertible
rules. All derivations are constructed as a backward derivations. In this section,
we present the main auxiliary tools of the decision algorithm: logical calculus,
reduction and separation rules, and contraction rules.

Let () be any rule of a sequent calculus. R@j¢ is applied to get the con-
clusion of(j) from the premises ofj). If rule (j) is backward applied, i.e., to
get premises ofj) from the conclusion of;j) we have a “bottom-up applica-
tion of (7)” instead of “application of j)”. The rule(j) is calledinvertiblein a



sequent calculug, if the derivability inI of the conclusion of j) implies the
derivability in I of each premise ofj). If the rule(y) is invertible, the bottom-
up application of j) preserves the derivability.

A decidablecalculus Log is defined by the axioml, A — A, A (where
A is the main formula of the axiom) and traditional invertible rules for logical
operators, V, A, —.

A derivation in the calculud.og is constructed as a tree using the bottom-
up applications of the rules. A derivatidn is successfuif each leaf ofD is an
axiom andunsuccessfuf there exists a leaf which is not an axiom.

Let us define reduction rules by means of which a sequent is reduced to a
set of sequents in some canonical forms (see below).

Reduction rulesconsist of the following rules:

— Logical rules: all the rules of the calculdsg and the following rules:

I'— A, Ab/z ) Alb/z], ' — A 3,
I'—AVzA dJaxA,I'— A
where the variable is agent variable and agent constafitalled an eigen-
constant) does not enter the conclusion of the rules.
— Rules for mutual belief:
EB(A), EB(MB(A)), I — A
MB(A), ' - A
I' - A EB(A); I' - A, EB(MB(A))
I — A, MB(A)
— Rule for everybody believes:
I — A AL, B(G)A
I — A, EB(A)

(MB —)

(— MB).

(— EB), wheren is a number of agents

Remark 1 We do not introduce reduction rule for everybody believes operator
(corresponding to implicatioEB(A) > A, B(i)A, wheren is a number of
agents) because it is included in separation rules (see below).

To define the separation rules some canonical forms of sequents are introduced.
A sequentS is a primarysequent, ifS is of the following shape:
Y1,V B, EBII;, MBA, — X5, 3BA, EBII,, MBA,, where
— for everyi (i € {1,2}) X; is empty or consists of logical formulas;
— VBI' denotes a listz B(x)Iy, B(1)I1,..., B(n)I}, where
Va B(x)I (denoted a®, below) is empty or consists of formulas of the
shapevz; B(z;)M;, j € {1,2,...}; B())I};, 1 <1 < n, is emptyor
consists of formulas of the shaf&(/)C;



— 3BA denotes a lisBz B(x)Ag, B(1)A4,..., B(n)A,, where
Jdx B(x)A is empty or consists of formulas of the shape; B(z;)N;
j€{1,2,...}; B(r)4,, 1 <r < n,isemptyor consists of formulas of
the shapeB(r)D;

— for everyi (i € {1,2}) EBII; (MB4,) is empty or consists of formulas
of the shapeEB(A) (MB(A), correspondingly).

A sequentS is areduced primarysequent, ifS is a primary one not containing
MBA; butI', A, IT, I1; may contain modalityMB.

A reduced primary sequeist is an EB-pure reduced primaryne if S is
of the following shapeZ;, ©+, BI', EBII;, — X, EBII,, where (1)@; =
Va B(x)Iy; (2) BI is empty or denotes a lisB(1)17, . .., B(n)I}, such that
n is a number of agents and feveryl (1 < | < n) B(l)I} is not empty
(3) at least one fronEBI1;, EBII> is not empty. Otherwise, the sequéhis
non-EB-pure reduced primargne.

From the shape of the primary sequent it is easy to see that bottom-up apply-
ing logical rules each sequent can be reduced to a set of primary sequents. As
it follows from the shape of reduced primary sequent, bottom-up applying all
reduction rules each primary sequent can be reduced to a set of reduced primary
sequents.

To avoid loop-check in considered extension of the logi®45,, let us
introduce marks of two sorts and indices. The marks are used in separation
rules for modalitiesB(¢) and EB. Thefirst sort markhas the shap®™* (Y™ ¢
{B*(t), EB*, MB*}). The first sort mark is defined as follows: let a formula
A is in the sphere of action of a marked modaliyf. Then an occurrence of
any modalityY (¥ € {B(t), EB, MB}) in A is marked by the first sort
mark andY** = Y*. Both positive and negative occurrences of modality
may contain the first sort mark. Treecond sort markas the shap@®~(t).

Only positive occurrences of belief modalif$(¢) in a sequent may contain

the second sort mark. This mark is essential to get loop-check-free derivations
in considered extension of the logi€ D45,,. Besides marked modalities we
useindexed formula®f the shapedz® B*(2°)A, where3z° € {@, 3z} and

x° = ¢ if 3z° = @; an indexk is empty ork € {x°1,...,*°m}, wherex°® €

{2, *}. Only positive occurrencesf formulas of the shapgz° B(z°)A in the
succedent of a sequent may contain the indices. In the ikdefkthe shape

x°[ [ denotes a number of bottom-up applications of a separation rule for belief
modality with the same main formula.

Let us introduce separation rule for everybody believes mod#iB. The
conclusion of this separation rule isEBB-pure reduced primary sequent, such
that logical part’; — X is not derivable in the calculusog.



Separation rule (SR;) for everybody believes modality EB:

@3, Iy, B, I, EB*II, IT, — A°
21,04, BI', EBII, — X5, EBII,, EB(A°)

(SRy),

where®; and BI” are determined in the definition d&B-pure reduced pri-
mary sequenti’ (obtained fromBI") denotes a listy, ..., I},, wheren is a

number of agentsEB(A°) € {@, EB(A)}; if EBII,, EB(A°) is empty,

then A° is empty, otherwisel® = A.

The formulaEB(A) in the rule(SR;) is themain formulaof this rule.

Let us introduce two separation rules for belief modaByt) denoted as
(SR2) and(SR3). The conclusion of these separation rules is a reduced primary
sequent, such that logical pary — X is not derivable inLog.

Separation rule (SR») for belief modality B(¢):

@1, Iy, B* (1)1, I}, EB*II}, [T, — ©4, B(r)A,,32° B (z°)M, M

X,V BI', EBII, — Yo, 3BA, 32° Bk (z°) M, EBII, (SR2),

whereV BI', 3 BA, and®; are determined in the definition of primary sequent;
®2 meansiz B(x)Ay.

The formuladz® B (2°) M is themain formulaof (SR»); 32° € {2, 3x}.

To define an index let us consider two cases.

(1) 32° = @, thenz® =i and3z° B¥(2°) M has a shapd” (i) M. In this
casd =r=i,i.e.,, B(l)I;and B(r) A, consist of formulas of the shag@(i) D.
The indexs is defined in the following way. Let (1) be the number of negative
(positive, correspondingly) occurrences of modalitiBéi), EB, MB in M,
let 79, 71,..., T, Tne1 b€ the number of negative occurrences of modalities
B(i), EB, MBin Iy, I,..., Iy, II;, respectively, and = max(m, 71, . . .,
TnyTnt1), p/ =max(p —n,7 —n). Thenk € {x°0,...,%°p’} (wherex® €
{2, x}), at the very beginning is empty and is treated a$0. The indexo is
defined as follows: it = «°l, [ € {0,...,p'} andl < p’ thenoc=x°( + 1);
otherwise, i.e., ik=*°l andl=p’, theno = —.

(2) 3x° =3z. In this case all pairs consisting frof(/)I; (1 <! < n) and
B(r)A, (1 < r < n) must be reset. The indexis defined in the same way
as in the case (1) replacing a modalB/() with B(t), wheret is any agent
variable or any agent constant.

The separation ruléSRy) corresponds to transitivity and Euclidean prop-
erties of belief modality.

Separation rule (SR3) for belief modality B(t):

i)l—b? B*(Z)[‘lal—‘la EB*HbUl—}
%, VBT, EBIT,— %,,3 BA, EBII;

(SR3),



whereV BI', 3BA, and®; are the same as in the rul8Rs).

The rule(SR3) corresponds to the serial property of belief modality.

During the reduction to primary and reduced primary sequents the following
contraction rules are used.

Contraction rules. The rule allowing to replacel, A; with A (where A
andA; coincide or are congruent ones [9]) is an ordinary contraction rule. The
rules allowing to replacéB®(¢)A, B°(t)A, whereo € {@, %}, with B¥(t)A,
to replaceB*(t)A, B~ (t)A with B—(¢)A, and to replacér*A, Y A, where
Y € { B(t), EB, MB}, with Y* A are marked contraction rules. Contraction
rules are backward appligahplicitly (together with other rules).

Some examples in next section demonstrate an application of the separation
rules and the use of the marks/indexes.

4 Description of Decision Algorithm

In presented decision procedure for the extension of the 16gi#i5,, loop-
check-free sequent calculus is proposed. Such type calculi correspond to contrac-
tion-free calculus for modal logic. For a sequent containing different occur-
rences of mutual belief modalitivIB two kind of loop-check (saturation) are
used: for positive occurrences of mutual belief modality loop-check is used to
find non-logical (loop-type) axioms, and for negative ones loop-check (called
degenerate saturation) is used to establish a non-derivability criterion.

So, along with the logical axioms, we use non-logical (loop-type) axioms (as
in other works on temporal and agent-based logics with induction axioms, see,
e.g., [12], [13]). First we define parametrically identical formulas and sequents.
Namely, formulasd and A’ are called parametrically identical ones (in symbols
A~ A)if either A = A’, or A and A’ are congruent [9], or differ only by
the corresponding occurrences of eigen-constants of the (ules), (3 —);
moreover , the occurrences of modalfyand marked modality*, whereY €
{B(t), EB, MB}, are treated as coinciding. Sequefts= A;,...,A; —
Apit, o AgpmandS’ = Ay, AL — AL, Ay, are parametrically
identical (in symbolsS ~ 5’), if Vj (1 < j < k+ m) formulasA; andA; are
parametrically identical ones. We say that a sequert I' — A subsumes a
sequents’ = I1,I" — A’,0 (in symbolsS = SNif I' - A~ T"— A’ (in
special case§ = S’). A sequentS’ is subsumedby S.

To obtain a negative criterion of derivability for the extension of the logic
K D45, let us introduce a notion @ffinal sequent.

A primary sequent of the shap®g,,VB*I", EB*Il;, MB*A; — X,
3B~ A (in special casel,, 3B~ A is empty), such that logical part of this se-
quent, namelyY; — X5 is not derivable in the calculusog, is b-final sequent.



Let D be a derivation in some calculus ande a branch irD. The primary
sequents = I' — A from the branchi is asaturatedsequent if, in the branch
aboveS, there exists a subsumed Byprimary sequens$’, i.e.,S = S’.

Let S =J54,VBI', EBIl;, MBA; — 35, EBII, be a saturated primary
sequent in a derivatio®. ThenS is degenerated saturateshe if in D there
exists a subsumed by primary sequens’ of the shapeX’, v B*I"’, EB*II;,
MB*A] — X4, EB°IL, (o € {@,+}) such that (1) logical part af’ is not
derivable in the calculugog; (2) 11, does not contain any positive occurrence
of modality MB.

A saturated primary sequefitis M B- saturatedf S = I" — A, MB(A).
Sequents subsumed by aviB-saturated sequent will be used as non-logical
axioms.

The decision algorithm for an arbitrary sequent is realized by means of a
calculus for mutual beliefX/ BQ).

Calculus M BQ:

A calculusM BQ) is obtained from the calculuog adding the separation
rules(SR;) (1 <1 < 3), the reduction rules, contraction rules, and non-logical
axioms of the shapg' — A, MB(A).

A derivation D in the calculusM B@ is anordered derivationif it consists
of several levels and each level consists of bottom-up applications of reduction
rules. In this derivation at each level, when a set consisting of only reduced pri-
mary sequents is received, pthssiblebottom-up applications of the separation
rules to every reduced primary sequent are realized. Each bottom-up application
of the separation rules provides a possibility to construtitfarent(in general)
ordered derivatiorD;, (k > 1). Let in the levelj it be possible to bottom-up
apply the rule(SR,) using as the main formula of this rule several formulas,
namely,3x$B(xy) M, ..., 3zy B(xp) M,. In this case as the main formula of
(SRy) we choose a such formultr? B(x7)M; which was previously used as
the main formula of this rule in the level — & (k > 1). A such tactic of
construction of an ordered derivation is caltlicectedone. To eliminate redun-
dancy from constructed ordered derivation in each level we do not consider (for
a while) a sequent which is subsumed by some sequent in the level.

The ordered derivatio®,, is a successful one, #achleaf of D, ends with
axiom (either logical or non-logical). The notion of logical axiom is obvious.
Let us consider the notion of non-logical axiom in more detail. Let in ordered
derivationD there exists reduction of a primary sequent of the stthpel” —

A, MB(A) to a set of primary sequents, ..., S,, where sequen$;, (1 <
k < p) has the shapél, I] — ©,A;, MB(A’) and is such thal’ — A ~
Il — Aj andA ~ A’. The sequen$ belongs ta-th level of D andS, belongs
to (i + 1)-th level of D (I > 1). Then the sequentS; are considered as non-



logical (MB-loop-typg axioms of M B(@. In Section 5 it will be justified that
non-logical axioms are founded automatically and consist of some parts of an
end sequent ab.

If thereexistsan ordered derivatioP of sequents such that in a leaf afach
branchi of D there is either a logical axiom, or a non-logical axiom, then in both
these cased/ BQ + S (positive criterion of termination of the procedure). If in
all possible ordered derivatiorig;, of a sequent thereexistsa branch having
a sequent which is either non-derivableling or degenerated saturated one or
b-final one, then\/ BQ ¥ S (negative criterion of termination of the procedure).

In the next section it will be justify that for any sequent a process of con-
struction of an ordered derivation always terminates and proceeds automatically.

Bottom-up application of the reduction rule- MB) isinduction-freeone,
if the left premiseS’ of this rule has a shapeé — A, EB(A), whereA, A do
not contain positive occurrences of modal¥B. If M BQ - S’ andD does
not contain non-logical axioms then this bottom-up applicaticuiscessful

From the notion of an ordered derivationii BQ) we get the following

Lemma 1 (derivability criterion in M BQ) Let S be an arbitrary sequent.
ThenMBQ P S if and only if each induction-free bottom-up application
of the reduction rulé— MB) in D is successful.

Let (SR;) be the rule obtained from the rul§ R2) changing a definition of
the indexo. Namely, let3z° B*(2°) M be the main formula of the rule R ),
andk € {x°0,%°1,...} (wherex® € {@, x}), at the very beginning is empty
and is treated ag°0; if £ = x°l theno =*°(I + 1). Let a calculusM BQ* is
obtained fromM BQ adding the rulé SR; ). An application of the ruléSR;)
in M BQ™ is degenerate if > p’ + 1, wherep’ is determined in the same way
as in the rulg SRy).

Analogously as in [13] using induction on number of the degenerate appli-
cation of the rulg SR; ) we can prove

Lemma?2 If MBQ" - SthenMBQ I S.

From Lemma 2 and relying on directed tactic in construction of ordered
derivation we get

Lemma 3 Let D be an ordered derivation idd BQ. Let 1,V BI', EBIT; —
Y, 3BA, 3z° B¥(2°) M, EBII, be a conclusion of an application of the rule
(SRy) in D. Then the same positive occurrence of the formidaBF (z°) M
may be the main formula of applications of the separation ($I&;) in D at
mostp’ + 1 time, wherep’ is defined in the rul€SRz).



Let us demonstrate saturation-free ordered derivation®/BQ), i.e., all
branches of constructed ordered derivations end with logical axioms.

Example 1 (a) LetS = B(1)P — B(1)B(1)(P Vv Q). We can bottom-up
apply (SR2) or (SR3) to S. Bottom-up applyingd SR3) to S we getb-final
sequentB*(1)P, P — . Let us consider the possibility to bottom-up apply
(SRy) to S. For S we havep = 0, n = 1, 7 = 0, andp’ = 0. There-
fore bottom-up applyingSRs) to S we getc = — andS; = B*(1)P,P —
B~ (1)B(1)(PVQ), B(1)(PV Q). Again, we can bottom-up apply R2) or
(SR3) to Sp. Let us apply(SR2). We can bottom-up applySR2) to S; only
with B(1)(PV Q) as the main formula. Since féf p’ = 0, we getr = — and

Sy =B*(1)P,P— B (1)B(1)(PVvQ), B (1)(PVQ),PV(Q.Bottom-up
applying(— V) to S, we get an axiom. Therefofed BQ F S.

(b) LetS= B(1)EB(P) — B(1)(PV Q),i.e, forS p=0,n=0,7=1,
andp’ = 1. Therefore bottom-up applying Rz) to S we getoc =1 and Sy =
B*(1) EB*(P), EB(P) — BY(1)(P Vv Q), (P V Q). Since forS; p’=1and
k=1, bottom-up applyingSR;) to S; we getS, = B*(1) EB*(P), EB*(P),
P— B~ (1)(PVQ), PVvQ.Bottom-up applying— V) to .S, we get an axiom.
ThereforeM BQ + S.

(c) LetS = B(1)EB(B(1)P) — B(1)A, whereA = -B(2)Q Vv P.
For S we havep = 0, = 0,7 = 2, and p’ = 2. Therefore bottom-up apply-
ing (SRy) to S we getoc = 1 and, after applying(— V), (— -), we get
S = B*(1) EB*(B*(1)P), EB(B(1)P), B(2)Q — B!(1)A*, P. Since for
S1 p’ = 2, bottom-up applyind SRy) and (— V), (— —) from S; we get
oc=2andS; = B*(1) EB*(B*(1)P), EB*(B*(1)P), B(1)P, B(2)Q —
B2(1)A, P. For Sy we get agairp’ = 2. Bottom-up applyindSRs), (— V),
(— —) from Sy we getc = — and S = B*(1) EB*(B*(1)P), EB*(B*(1)
P), B*(1)P, P, B(2)Q — B~ (1)A, P. SinceSs is an axiom M BQ I S.

(d) Let {1,...,n} be a set of agent constants arfsi = B(1)F;,
... B(n)P, — EB(V_, F;). Bottom-up applyind SR;) and then(— V)
we get an axiom. Therefoled BQ + S.

(e) Let{1,2} be a set of agent constants asd= B(1)P — EB(P Vv
- B(2)P). Bottom-up applying— EB), (— A) from .S we get reduced pri-
mary sequent$; = B(1)P — B(1)(P Vv -B(2)P)andS; = B(1)P —
B(2)(P v = B(2)P). Bottom-up applyindSRz) and (— V) from S; we get
an axiom. Bottom-up applyingSR,) and (— V), (— —) from S, we get
S; = B(2)P — B!(2)(P Vv =B(2)P), P. Bottom-up applyingd SRs) and
(— V) from S; we get an axiom. Therefored BQ F S.



Let us demonstrate negative criterion of termination, i.e., construction of or-
dered derivations i/ BQ) containing a branch which ends wiiHinal sequent
or containing a degenerated saturated primary sequent.

Example 2 (a) LetS =— JxB(z)A, whereA = -EB(P) vV Q, i.e., forS
p =1landp’ = 1. Bottom-up applyindSR:), and then(— V), (— =) from
S we getS; = EB(P) — 3z B'(x)A, Q. Since forS; k=p’=1, bottom-up
applying(SR2), and then— V), (— —) from S; we getS; = EB*(P), P —
Jz B~ (x)A, Q. Sz is not an axiom and is-final. ThereforeM BQ ¥ S.

(b) Let S = EB(P), MB(A) — EB(Q), whereA = P D -EB(Q).
Bottom-up applying MB —) to S we getS; = EB(P), EB(MB(A4)),
EB(A) — EB(Q). Bottom-up applyingS R, ) to S; we getSy = EB*(P), P,
EB*(A), A, EB*(MB*(4)), MB*(4) — Q. Bottom-up applying >—),
(= —) from Sy we get an axiom (with? as the main formula) ands; =
EB*(P), P, EB*(A), EB*(MB*(A4)), MB*(A) — EB*(Q), Q. SinceS >
Ss3, from the shape of; we get thatS is a degenerated saturated sequent. There-
fore MBQ ¥ S.

Let S’ be a sequent obtained from the seque&mneplacing the formulad by
P>-B(1)Q. Then we get derivation ending withb&inal sequent.

Let us demonstrate a derivation M BQ with M B-saturation, i.e., a con-
structed ordered derivation contains non-logical axioms along with logical ones.

Example 3 Let S be EB(Vz B(z)P), MB(A) — MB(3z B(z)P), where
A = 3z B(z)P O EB(VzB(z)P). The sequens$ is a modified version of
induction axiom for modalityM B.
Bottom-up applying— MB) to S we get two sequents = EB(Vz B(z)P),
MB(A) — EB(3zB(x)P) and S, = EB(VzB(z)P), MB(4) — EB
(MB(3z B(z)P)). Bottom-up applying MB —) to S; we get the sequent
S; = EB(V2B(z)P, EB(A), EB(MB(A)) — EB(3z B(x)P). Bottom-
up applying(SR;) to S} we get the sequent = Va B(z)P, A, MB(A), A —
Jz B(x) P, whereA = EB*(Vz B*(z)P), EB*(A), EB*(MB*(A)). Bottom-
up applying(>—) from S7 we get sequentS;; = Vo B(z)P, MB(A), A —
Jz B(x)P andS;2 = Va B(z)P, EB(Vx B(z)P), MB(A), A — 3z B(x)P.
SinceS1; = Spo, at first we consider the sequefit;. Bottom-up applying
(MB —) from S1; we getS]; = Vo B(z)P, A — 3z B(x)P. Bottom-up ap-
plying (SR2) to Sj; we get an axiom withP as the main formula. Therefore
MBQ = SH. SinceSH >~ Slg, MBQ F 512 as well.

Now let us consider the sequesit Bottom-up applying MB —) to S, we
getS, = EB(VzB(z)P), EB(4), EB(MB(A4)) — EB(MB(3z B(z)P)).
Bottom-up applyindSR;) to S} we get the sequett] = Vo B(x)P, A, MB



(A),A — MB(3zB(x)P). Bottom-up applying>—) to S we get two
sequentsSy; = Ve B(z)P, MB(A),A — 3z B(x)P, MB(3z B(x)P) and
Soo = VxB(z)P, EB(Vx B(z)P), MB(A),A — MB(3zB(z)P). Since
S = S99, Sis MB-saturated sequent. Now let us consider the seqdent
Bottom-up applying— MB) and then( MB —), (SR2) in both branches of
(— MB) we get an axiom witl® as the main formula. Therefofed BQ + S.

5 Foundation of Presented Decision Procedure

To justify the presented decision procedure, we must found: (1) termination of
the procedure, (2) invertibility of reduction and contraction rules, and existential
invertibility (see below) of the separation rules M BQ and (3) MB-type
saturated sequents as non-logical axioms. The termination will be founded by
means of finiteness of the so-call&Isubformulas of primary sequents which
are generated during the construction of an ordered derivation. Let us define the
notion of R-subformulas of a sequent.

Let S be a primary sequent ard be a formula entering. A set of k-
subformulas of” from S is denoted a®2.Sub(C') and defined inductively.

1. RSub(P) = @, whereP is a logical formula.

2. RSub(EB(A)) = RSub(A).

3. RSub(—A) = RSub(A).

4. RSub(A ® B) = {RSub(A)} U{RSub(B)}, where® € {D, A, V}.

5. RSub(B (z)A) ={B(i)A} U{RSub(A)}.

6. RSub(MB(A))={ EB(MB(A))}U{RSub(EB(A))}.

7. RSub(QzB(xz)A) = RSub(B(c)A), where is V(3) and @ occurs
positively (negatively) inS, z is an agent variable ands a new agent constant.

8. RSub(QxB(x)A) = RSub(A), where@ is 3(V) and ) occurs po-
sitively (negatively) inS.

A set of R-subformulas of a sequeSt= A;,..., Ay — Agt1,---, Akrm
is denoted byRSub(S) and defined aBSub(S) = UK RSub(A;). R*Sub(S)
denotes a set obtained froRSub(.S) by merging parametrically identical for-
mulas.

From definition of R*Sub(S) we get that the sek*Sub(S) is finite. This
fact (along with Lemma 3) is crucial to obtain termination of presented proce-
dure.

Analyzing the construction of an ordered derivationMhB() we get that
the presented decision procedure is exponential-timePs W AC E-complete,
i.e., during the construction of an ordered derivation of a seqtieve generate
the primary sequents the length of which can be restricted by some polynomial
depending orR* Sub(S).



To justify the invertibility of reduction and contraction rules and the existen-
tial invertibility of the separation rules it/ BQ an infinitary calculus\/ BQ,, is
introduced M B(Q),, is obtained from\{ B by dropping the non-logical axiom,
marks and indices in separation rules and replacing the reductio+ullsIB)
by following infinitary rule:

I' - A, EB(A);...;I" — A, EB*(A);. ..
I — A, MB(A)

(— MB,),

ke {l,...}; EB{(A) = EB(A), EB*(4) = EB(EB*!(A4)), k > 1.

Using induction orO(D), whereO(D) is the height of a derivatio® [13]
of the conclusion of a reduction rule M B@,,, we can prove an invertibility of
reduction rules (including— MB,,)) in M BQ,,.

Using reduction rules it is possible to construct a reduction of sedtiémt
a set{Si,..., Sy}, whereS; (1 < j < m) is a primary (reduced primary)
sequent automatically. Using the invertibility of reduction rules we get that if
MBQ,F SthenMBQ, - Sj,j€{1,...,m}.

It is easy to see that the separation rule®;) (I € {1,2,3}) are not in-
vertible in the usual way but they are existential invertible. The separation rule
(SR;) (I € {1,2,3}) is existential invertiblef from derivability of the con-
clusion of the separation rulgs R;) follows that there exists at least one rule
(SR;) (1 <1 < 3) such that a premise of this rule is derivable. It is obvi-
ous that, in contrast to deterministic usual invertibility, existential invertibility is
non-deterministic.

Using double induction orc k(S),O(D) >, wherek(S) is a number of
positive occurrences of modalitt/IB in an end-sequent of the derivatidn,
we can prove an existential invertibility of separation rules.

Lemma 4 (existential invertibility of separation rules) Let.S be areduced pri-
mary sequent, i.e.S = X1,VBI, EBI;, — X5, 3BA, EBII,, such that
MBQ, - S andLog ¥ X1 — X5. Then either

— S is an EB-pure reduced primary sequent and there exists a seqgbignt
such thatM BQ,, + Sy = ©%, Iy, BT, I", EB*II,, II, — A°, where the
sequentS; is defined in the formulation of the ru{[& R, ), or

— there exists a formuldz® B¥(2°) M from 3 BA, such thatV BQ,, - Sy =
®;, Iy, B*()I},1;, EB*II,,II;, — O3, B(r)A,,32°B7(z°)M, M,
where the sequerfi; and the index is defined in the formulation of the
rule (SRz), or

— there exists > 0 such that\/ BQ,, + Ss =073, Iy, B())* I3, I;, EB* 11,
II, —, where the sequets; is defined in the formulation of the ru(& R3).



Using invertibility of the reduction and separation rules we can prove that
the contraction rules are invertible M BQ).,
Using Scliitte method (analogously as in [8]) we get

Theorem 1 (soundness and-completeness of\f BQ),,) Let S be a sequent.
ThenvVM | S <= MBQ, F S. The cut rule is admissible i BQ,,.

From the fact that/ BQ, + MB(A) = EB(A) A EB(MB(A)) and
admissibility of cut inM BQ,, we get that the rulé— MB) is admissible and
invertible inM BQ,,.

To get an equivalence between calciBQ and M B(@,, we introduce
invariant calculud N M B(Q. To define this calculus let us introduce some aux-
iliary notions. LetAM BQ P S. Then a set ofMB-saturated sequents, i.e., the
sequents of the shaje— A, MB(A), in D is denoted by5at{S}. Let us de-
composeSat{S} into a set of set§at*{S} such that (Lfat{S} = Y Sat'{S};
(2)Vij(Sat'{S} N Sat’'{S}) = @; (3) if Sy, Sz € Sat'{S}, thenS;, S, have
a common succedent member of the shA@8(A), which is called anucleus
of Sat'{S}. Every setSat'{S} is a component of decomposition {5}

An invariant calculus/ N M BQ is obtained from the calculud/ BQ re-
placing the non-logical axioms by the following invariant rule:

I' - AL I— EB(I); I -» EB(A)
I' - A MB(A)

(— MBy),

where the invariant formuld is constructed automatically.
The rule(— MBy) satisfies the following conditions:

— the conclusion of — MB;y), i.e., the sequent’ = I" — A, MB(A) is
such thats’ € Sat*{S} andSat'{S}is {¥X;1 — II;;, MB(A);...; X, —
II;,, MB(A)}, where MB(A) is the nucleus o5at*{S}, i.e., S" is an
MB-saturated sequent from a derivation of a seqeint M BQ);

-1 = j\_@l((ﬂ&j)/\ A =(VIL;;)Y; let I be any set of formulas of the shape
B(i1)Cy, ..., B(im)Cn, Wherei; (1 <1 <m)) is an agent eigen-constant;
thenQIl = Qz1B(z1)Cy,...,Qxy B(x,)Ch, Q € {V,3} (therefore
all the eigen-constants are correspondingly boundgd);I™v) means the
conjunction (disjunction, respectively) of formulas fram

To prove that fromM BQ + S follows IN M BQ + S, a derivation of each
MB-saturated sequent itV M B() must be constructed.

Example 4 LetS be the same sequent as in Example 3, i.e., has the shape
EB(VzB(z)P), MB(A) — MB(3x2B(z)P), whereA = 3z B(x)P D



EB(Vz B(x)P). From Example 3 it follows that is a MB-saturated se-
quent. From definition of the invariant formulawe get/ = EB(Vx B(z)P) A
MB(A). Itis easy to verify thaLog - EB(Vx B(z)P), MB(A) — I (1);

INMBQ+FI—EB(I); (2) INMBQFI—EB(A) (3).
Applying(— MBy) to (1), (2) and (3) we gefNM BQ I S.

Analogously as in [13] we get
MBQFS < INMBQF S < MBQ,F S ().
From (*) we get that all reduction rules and contraction rules are invertible in
M BQ and the separation rules are existentially invertibl@4@i Q).
From Theorem 1 and (*) follows that/ BQ is soundandcomplete
Using these facts, finiteness Bf Sub(S), and Lemma 3 we get the following

Theorem 2 Let S be an arbitrary sequent. Then one can automatically con-
struct a successful or unsuccessful ordered derivafioof the sequenf' in
M BQ@ such thatD always terminates.
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