
Speculative Constraint Processing with

Iterative Revision for Disjunctive Answers

Martine Ceberio1, Hiroshi Hosobe2, and Ken Satoh2

1 University of Texas at El Paso
500 West University Avenue, El Paso, Texas 79968-0518, USA

mceberio@cs.utep.edu
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
{ ksatoh, hosobe }@nii.ac.jp

Abstract. In multi-agents systems, incompleteness, due to either com-
munication failure or response delay, is a major problem to handle. To
face incompleteness, frameworks for speculative computation were pro-
posed (see [5, 6, 4]). The idea developed in such frameworks is to allow
the asking agent, while waiting for slave agents to reply, to reason using
default belief until replies are sent.
In [6] in particular, a framework is proposed, that allows an agent not
only to perform speculative computation but also to accept iterative an-
swer revision, in the case of yes/no questions. In this paper, we present an
extension of the framework in the case of more general types of questions
using constraint logic programming (CLP).

1 Introduction

Multi-agent systems are very fashionable and convenient, for they make it pos-
sible, for instance, to take advantage of multi-processor machines, and for they
also make it possible to design human-like efficient organizations of agents. The
main limitation to such an approach is that, as arises in human organizations,
communication may be an issue: delayed or broken, it leads to incompleteness
of the information in the reasoning structure.

This is a concrete concern when we consider distributed systems such as
the Internet, in which communication is indeed not guaranteed, and even if we
could guarantee it, communication may either take time, or agents themselves
may delay their sending information.

In the case of such unideal, but as we believe, practical situations, when
problem-solving is at stake, frameworks for speculative computations were pro-
posed: first for yes/no questions only [5], and then for general questions [4] using
constraints.

In [5] and [4], they only provide the possibility for the master agent to per-
form speculations and a returned answer from the slave agent is final and there
is no possibility of change of answers. However, if we let every agent perform
speculative computation, the asked agent may revise his answer since the pre-
vious answer sometimes depends on the asked agent’s belief, which might turn



out to be false. Therefore, a chain reaction of belief revision among agents might
occur which was firstly observed in [6], and Satoh and Yamamoto provide a re-
visable speculative computation method for yes/no questions. Essential part of
their work is a dynamic iterative belief revision mechanism which can handle a
revision of an answer for query even during the execution.

Belief revision is indeed very important for both the sake of flexibility (in-
formation is processed before it is complete), and speed of computation (time is
saved in case prior information is later entailed).

In this paper, we combine the methods proposed in [4] and [6], and ex-
tend them, so that we can handle iterative answer revision for a query with
constraints. We also complete these methods with the ability to corporate dis-
junctive answers. So, the main contribution of this paper is the definition of
a framework that enables to perform speculative computations on constraints
while handling belief revision, and that handles as well disjunctive answers. In
particular, the main challenges dealt with in this work are the following.

– First, processing speculative constraints, as shown in [4], is manageable when
belief revision is not considered. In this paper, belief revision is made possi-
ble because it enables more speculative computation in multi-agent systems.
This hardens the problem a lot: the process management needs to be modi-
fied so as to enable changes in the computation at any time, while maintain-
ing a reasonable balance between not being too much space-consuming, and
not loosing too much time (i.e., we don’t want to start from scratch all the
time). The process management is presented in detail in this paper, as well
as results on the space complexity of our operational model.

– The second challenging point described in this paper is the way disjunction
is now handled in the framework we propose. Indeed, considering the situ-
ation where each agent’s behavior is specified as a CLP program, we need
to handle alternative answers, since these answers may come from differ-
ent derivations in CLP. By manipulating such alternative answers, we face
another complication, in that we need to distinguish a revised answer of
a previous answer, from an answer derived from an alternative derivation
path3. To solve this problem, we devise an answer entry which keeps track
of the usage status of the answer in processes. This new feature impacts the
way processes are managed, as described in Section 3, and therefore makes
the problem more complicated.

For an iterative belief revision, many proposals have been described. As far as
we know, existing frameworks separate reasoning and belief revision, except [5,
6, 4]. And this work is along the line of the works of Satoh et al. in a more general
setting.

There are works on a formalization of an agent in terms of logic programming
such as [3]. Although these research are important in their own right, our paper

3 Indeed, in particular, a contradictory answer should be considered as contradictory
only if it is a revision of a former answer, not if it is an alternative answer.



pursues another branch of investigation in the context of speculative computa-
tion.

Most related research would be constraint programming language such as
AKL(Andorra Kernel Language) [2] and Oz [7] which perform a kind of spec-
ulative computation. AKL allows local speculative variable bindings in a guard
of each clauses until one of guards is succeeded and Oz can control multiple
computation spaces each of which represents alternative path of constraint pro-
cessing. As far as we understand, however, speculative computation used in these
languages are mainly motivated for or-parallel computing where all alternative
paths of computation are executed in parallel until one of paths are succeeded
eventually. On the other hand, we regard a speculative computation as a default
computation where most plausible paths of computation are executed. Moreover,
they do not consider any revision of the answers.

The structure of the paper is as follows. We firstly define a framework for
speculative constraint processing and a semantics of the framework. Then, we
describe an operational model and show an example of execution and state
correctness of our model. Finally, we discuss space complexity issues, before to
conclude.

2 Speculative Constraint Processing

In this section, we provide a framework of speculative constraint computation
based on the CLP framework [1]. This framework is designed so that an agent not
only performs speculative constraint processing but also accepts revised answers
and alternative answers. We then define a semantics of this framework, in Sub-
section 2.2.

2.1 Framework Definition

Definition 1. Let Σ be a finite set of constants. We call an element in Σ a

slave agent identifier. An atom is of the form either p(t1, ..., tn) or p(t1, ..., tn)@S

where p is a predicate, ti(1 ≤ i ≤ n) is a term, and S is in Σ.

We call an atom with an agent identifier an “askable atom”, and an atom without
an identifier a “non-askable atom”.

Definition 2. A framework for speculative constraint computation, in a master-
slave system is a triple 〈Σ, ∆,P〉 where:

– Σ is a finite set of constants;

– ∆ is a set of rules of the following form called default rule w.r.t. Q@S:

Q@S ← C‖.

where Q@S is an askable atom, each of whose arguments is a variable, and

C is a set of constraints, called default constraint for Q@S;



– P is a constraint logic program, that is, a set of rules of the form:

H ← C‖B1, B2, ..., Bn.

where:
• H is a non-askable atom; we refer to H as the head of R denoted as

head(R);
• C is a set of constraints, called the constraint of R, and denoted as

const(R);
• each Bi of B1, ..., Bn is either an askable atom or a non-askable atom,

and we refer to B1, ..., Bn as the body of R denoted as body(R).

Note that a default is not necessarily specified for every askable atom. Moreover,
we allow multiple defaults for the same askable atom.

Example 1. We consider the following example of hotel room reservation. There
is a master agent m: m asks travellers a and b. If both travel, m reserves a twin
room. If one of them travels, m reserves a single room. Agent m has default
information about the status of a and b for days 1, 2 and 3, but the real status
will be obtained directly from a and b, and the status is therefore likely to be
changed.

This example can be represented as the following multi-agent system 〈Σ, ∆,P〉4:

– Σ is the set of slave agents. Here, there is one master agent, m, and two
slave agents, a and b. Therefore Σ = {a, b}.

– ∆ is the set of default information (default rules), assumed by the master
agent. In particular, let us suppose that m assume that a is free on days 1,
and 2, and busy on day 3, and that b is free on day 2, and busy on day 1.
Then the corresponding set ∆ is as follows:

∆ = { d1 : fr(D)@a←D=1‖.,
d2 : fr(D)@a←D=2‖., d3 : bs(D)@a←D=3‖.,
d4 : fr(D)@b←D=2‖., d5 : bs(D)@b←D=1‖.}

Let us remark that it is not necessary that a default information exist for
all cases. In particular, m has no default information concerning the status
of b on day 3.

– P is a constraint logic program, to be solved by agent m. In our case of hotel
room reservation with two travelers, it is made of the following set of rules:

rsv(R, L, D)← R= tr, L=[a, b]‖fr(D)@a, fr(D)@b.
rsv(R, L, D)← R=sr, L=[a]‖fr(D)@a, bs(D)@b.
rsv(R, L, D)← R=sr, L=[b]‖bs(D)@a, fr(D)@b.

In order to solve this constraint satisfaction problem, agent m will have to
ask agents a and b about fr(D)@a, bs(D)@a, fr(D)@b, bs(D)@b.

4 A string beginning with an upper case letter represents a variable and a string
beginning with a lower case letter represents a constant. We abbreviate “free” as
fr, “busy” as bs, “travel” as trvl, “reserve” as rsv, “twin room” as tr, and “single
room” as sr.



2.2 Semantics of Speculative Constraint Processing

For a semantics of the above framework, we index the semantics of constraint
logic program by a reply set which specifies a reply for an askable atom.

Definition 3. A reply set is a set of rules of the form:

Q@S ← C‖,

where Q@S is an askable atom, each of whose arguments is a variable, and C is

a constraint over these variables.

Let 〈Σ, ∆,P〉 be a framework for speculative constraint computation, and R
be a reply set. A belief state w.r.t. R and ∆ is a reply set defined as:

R ∪ {“Q@S ← C‖” ∈ ∆ | ¬∃ C ′ s.t. “Q@S ← C ′‖” ∈ R}

and denoted as BEL(R, ∆).

We introduce the above belief state, since if the answer is not returned, we use
a default rule for an unreplied askable atom.

Definition 4. A goal is of the form ← C‖B1, ..., Bn where C is a set of con-

straints and Bi’s are atoms. We call C the constraint of the goal and B1, ..., Bn

the body of the goal.

Definition 5. A reduction of a goal ← C‖B1, ..., Bn w.r.t. a constraint logic

program P, a reply set R and an atom Bi, is a goal ← C ′‖B′ such that:

– there is a rule R in P ∪R s.t. C ∧ (Bi = head(R))∧ const(R) is consistent5.

– C ′ = C ∧ (Bi = head(R)) ∧ const(R)

– B′ = {B1, ...Bi−1, Bi+1, ..., Bn} ∪ body(R)

Definition 6. A derivation of a goal G =← C‖Bs w.r.t. a framework for spec-

ulative constraint computation F = 〈Σ, ∆,P〉 and a reply set R is a sequence of

reductions “← C‖Bs”,...,“← C ′‖∅”6 w.r.t. P and BEL(R, ∆) where in each re-

duction step, an atom in the body of the goal in each step is selected. C ′ is called

an answer constraint w.r.t. G, F and R. We call a set of all answer constraints

w.r.t. G, F and R the semantics of G w.r.t. F and R.

In the above definition, we only consider the most recent reply set, whereas a
reply set might be varied during execution according to the slave agent’s answer
revision. We use the most recent reply set because it reflects the current situation
of the slave agents.

5 A notation Bi = head(R) represents a conjunction of constraints equating the argu-
ments of atoms Bi and head(R).

6 ∅ denotes an empty goal.



3 An Operational Model for Speculative Computation

with Iterative Answer Revision

3.1 Overview of Operational Model

The execution of the speculative framework is based on two phases, a process

reduction phase and a fact arrival phase. The process reduction phase is a nor-
mal execution of a program in a master agent, and the fact arrival phase is an
interruption phase when an answer arrives from a slave agent.

For the operational model, we use the following two kinds of objects: a process

and an answer entry.
Each process represents an alternative way of computation. Processes are

created when a choice point of computation is encountered, such as case splitting,
default handling and answer arrival. A process becomes a finished process when
the body of the associated goal with the process becomes empty. A process fails
when some used default constraints are found to contradict the newly returned
answer.

An answer entry is used to distinguish alternative answers and to detect
which old answer corresponds to the newly revised answer. This detection is
done by attaching an ID to each answer. If a new answer with an ID differ-
ent from any existing answer comes, it is an alternative answer. Otherwise, the
new answer is considered as a revised answer for the old answer with the same ID.

Figures 1∼4 intuitively explain how processes are updated according to ask-
able atoms. In the tree, each node represents a process, but we only show con-
straints associated with the process. The top node represents a constraint for
the original process, and the other nodes represent added constraints for the re-
duced processes. The leaves of the process tree represent the current processes.
Therefore, the processes which are not in the leaves are deleted processes.

Fig. 1 shows a situation of the processes represented as a tree when an askable
atom, whose reply has not arrived yet, is executed in the process reduction phase.
In this case, the current process, represented by the processed constraints C, is
splitted into two different kinds of processes: the first one is a process using
default information, Cd, and is called default process 7; and the other one is the
current process C itself, called original process, suspended at this point.

C

Cd
true

suspended

Fig. 1. When Q@S is processed, during the process reduction phase

Note that, if there are multiple definitions of defaults, we will have more than
one default process, but still only one suspended process. In addition, let us note

7 In this figure, we assume that there is only one default for brevity.



that the reason for suspending processes (which is, keeping them in memory),
is that in case of a contradictory revision of the default, or later alternative an-
swers coming, it is essential to keep memory of the original processes to be able
to restore them.

When, after some reduction of the default processes (represented on Fig. 2
by dashed lines), the first answer comes from a slave agent, expressing constraint
Cf for this askable literal, we update default processes as well as the original
suspended process as follows:

– Default process(es) are reduced into two different kinds of processes: the first
kind is a process adding Cf to the problem to solve, and the other is the
current process itself which is suspended at this point8.

– The original process is reduced into two different kinds of processes as well:
the first kind is a process adding ¬Cd ∧ Cf , and the other is the original
process, suspended at this point.

Let us remark that although the tree of processes grows, only leaves are kept in
memory.

C

Cd true

. . .

Cf true
suspended

Cf true
suspended

Cf ∧ ¬ Cd true
suspended

Fig. 2. When the first answer Cf for Q@S arrives

To explain the correctness of the above process update intuitively, we define
a frontier which represents the computation status of all alternative derivations.
A frontier w.r.t. a goal← C‖Bs, a framework for speculative constraint compu-
tation 〈Σ, ∆,P〉 and a reply set R, is a set of goals defined as follows.

1. The set consisting of the initial goal, {← C‖Bs} is a frontier.

2. Let F be a frontier w.r.t. the above initial goal, the framework and the reply
set. If a goal G is in F , B is an atom in G, and RGs = {G′| G′ is a reduction
of G w.r.t. P , BEL(R, ∆) and B}, then F\{G} ∪ RGs is a frontier.

Then we have the following properties.

Lemma 1. Let ← C‖Bs be a goal, F be a frontier of this goal, and C ′ be a

constraint. If we add C ′ to the constraints of every goal in F , then the disjunc-

tions of all answer constraints of these modified goals is logically equivalent to

the disjunction of all answer constraints of the goal ← C ∧ C ′‖Bs.

8 Let us remark that this splitting process is similar to the splitting process above-
described for the case of a first default used.



Lemma 2. Let ← C‖Bs be a goal, R be a reply set, and C ′ be a constraint.

Then, the disjunction of answer constraints of ← C ∧C ′‖Bs and ← C∧¬C ′‖Bs

is logically equivalent to the disjunction of all answer constraints of ← C‖Bs.

Let ← C‖Bs be a goal containing Q@S, suppose that it is reduced into
← C ∧ Cd‖Bs\{Q@S} by a default rule “Q@S ← Cd‖”. Let F be a frontier of
← C∧Cd‖Bs\{Q@S} when the first reply “Q@S ← Cf‖” is returned. Since our
semantics considers the most recent replies, at this point, we should consider:

← C ∧ Cf‖Bs\{Q@S}

instead of:

← C ∧ Cd‖Bs\{Q@S}.

One possibility to implement this change is that we just discard F and invoke a
new goal ← C ∧ Cf‖Bs\{Q@S}. However, in this case, we throw every compu-
tation away before F is obtained. To retain the previous computation as much
as possible, we propose the following execution.

1. We add Cf to the constraint of every goal in F .
Let us remark that the disjunction of all answer constraints from this new
frontier is logically equivalent to the disjunction of all answer constraints of
← C ∧Cd ∧Cf‖Bs\{Q@S} as Lemma 1 states. This computation keeps the
previous computation which is consistent with the new reply (Cf ).

2. In addition to the above computation, we also start computing a new goal:

← C ∧ ¬Cd ∧ Cf‖Bs\{Q@S}

to guarantee completeness. It is because the disjunction of all answer con-
straints derived from ← C ∧ Cd ∧ Cf‖Bs\{Q@S} and ← C ∧ ¬Cd ∧
Cf‖Bs\{Q@S} is logically equivalent to the disjunction of all answer con-
straints derived from ← C ∧ Cf‖Bs\{Q@S} as Lemma 2 states.

When an alternative answer, with the constraint Ca, comes from a slave
agent (as shown on Fig. 3), we need to follow the same procedure as when the
first answer comes (cf. Fig. 2), except that now the processes handling only
default information are suspended. So, this is done by splitting the suspended
default process(es), in order to obtain the answer constraints which are logically
equivalent to the answer constraints of:

← C ∧ Cd ∧ Ca‖Bs\{Q@S},

as well as by splitting the suspended original process, in order to obtain the
answer constraints which are logically equivalent to the answer constraints of
← C ∧ ¬Cd ∧ Ca‖Bs\{Q@S} (Fig. 3). By gathering these answer constraints,
we can compute all answer constraints for the alternative reply.



C

Cd true

. . .

Cf

. . .

true

Ca true
suspended

Cf

. . .

true

Ca true
suspended

Cf ∧ ¬ Cd

. . .

true

Ca ∧ ¬Cd true
suspended

Fig. 3. When the alternative answer Ca for Q@S arrives

On the other hand, when a revised answer, with the constraint Cr, comes,
all processes using the first (or current) answer are splitted, in order to obtain
the answer constraints which are logically equivalent to the answer constraints
of:

← C ∧ Cf ∧ Cr‖Bs\{Q@S},

and the suspended original process is splitted as well, in order to obtain the
answer constraints which are logically equivalent to the answer constraints of
← C ∧ ¬Cf ∧ Cr‖Bs\{Q@S} (Fig. 4). By gathering these answer constraints,
we can override the previous reply by the revised reply.

C

Cd true

. . .

Cf

. . .

Cr Cr

true
suspended

Cf

. . .

Cr Cr

true
suspended

Cf ∧ ¬ Cd

. . .

Cr Cr

true

Cr ∧ ¬Cf true
suspended

Fig. 4. When the revised answer Cr for Q@S arrives

3.2 Preliminary Definitions

A process is either an ordinary process or a finished process. An ordinary process

P is an expression of the form 〈PID, C, GS, WA, AA〉 where:

– PID: the ID for a process denoted as pid(P );



– C: the current constraint in the goal denoted as pconst(P );
– GS: the body in the goal denoted as gs(P );
– WA: a set of pairs 〈Q@S, WAID〉 where Q@S is an askable atom and WAID

is the ID of an answer entry whose answer is waited for by the process. We
denote WA as wa(P ).

– AA: a set of pairs 〈Q@S, AAID〉 where Q@S is an askable atom and AAID

is the ID of an answer entry whose answer is used in the process. We denote
AA as aa(P ).

A finished process FP is an expression of the form 〈Query, FPID, C〉 where:

– Query: an initial query for this process. It is used to send an answer to the
asking agent;

– FPID: the ID for a process. This is also used when this answer is returned
to the asking agent;

– C: the current constraint in the process.

For simplicity, an ordinary process is sometimes just called a process.

An answer entry A is an expression of the form 〈Q@S, AID, C, UPIDs〉 where:

– Q@S: the query given to the other agent denoted as aq(A);
– AID: the ID for an answer entry denoted as aid(A). We have the special

IDs, “o” for the answer entry created when this query is firstly asked, and
“d1, ...” for default answers. We call an answer entry with the ID “o” an
original answer entry for Q@S, an answer entry with an ID of “d1, ...” a
default answer entry, and other answer entries ordinary answer entries;

– C: the most recent answer constraint for Q@S for answer entry A denoted
as aconst(A). The constraint of the original answer entry is defined as true;

– UPIDs: the set of IDs of processes using an answer in A denoted as ups(A).

3.3 Process Reduction Phase

In the process reduction phase, we process the constraints we have, in a regular
CP way. The only difference is that we may have to consider default information,
or answers. In this subsection, we describe how we manage processes, following
the above-given definitions.
We do the following until no more process can be processed.

– When a query Qinit@Sself is asked from another agent S ′ where Sself is the
ID for this agent, we record Qinit as the initial query and S ′ as the asking
agent. We then create a new process 〈PID, {}, Qinit, {}, {}〉 where PID is
a new process ID.

– If there is an ordinary process P such that gs(P ) = wa(P ) = ∅,
1. Send an answer to the asking agent S ′ which is of the form:
〈Qinit@Sself , pid(P ), pconst(P )〉.

2. We change this process into a finished process of the form:
〈Qinit@Sself , pid(P ), pconst(P )〉.



– Else if there is a process P such that gs(P ) 6= ∅ and wa(P ) = ∅, then we
select an atom L in gs(P ) and reduce L as follows.
• If L is a non-askable atom,

1. For every rule R such that pconst(P )∧ (L = head(R))∧ const(R) is
consistent, we do the following:
(a) We create the following process
〈newPID, newC, GS, {}, AA〉 where
∗ newPID is a new process ID;
∗ newC := pconst(P ) ∧ (L = head(R)) ∧ const(R);
∗ GS := body(R) ∪ gs(P )\{L};
∗ AA := aa(P ).

(b) For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P ),
ups(A) := ups(A) ∪ {newPID}.

2. For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P ),
ups(A) := ups(A)\{pid(P )}.

3. We delete P .
• If L is an askable atom Q@S,

1. We do either of the following according to non-arrival/arrival of the
answer.
∗ If there is no ordinary answer entry of the form
〈Q@S, AID, C, UPIDs〉, then for each default “Q@S ← Cd‖.”
such that pconst(P ) ∧ Cd is consistent, we do the following:

(a) We create a new process
〈newPID, newC, GS, {}, AA〉 where
· newPID is a new process ID.
· newC := pconst(P ) ∧ Cd

· GS := gs(P )\{Q@S}
· AA := aa(P )∪{〈Q@S, d〉} where d is an ID for this default.

(b) We associate the newly created process with a default d of
Q@S as follows.
· If there is a default answer entry Ad = 〈Q@S, d, Cd, UPIDsd〉,

then ups(Ad) := UPIDsd ∪ {newPID}.
· Else if there is no default answer of the form
〈Q@S, d, Cd, UPIDsd〉, we create the answer entry
〈Q@S, d, Cd, {newPID}〉.

(c) For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P ),
ups(A) := ups(A) ∪ {newPID}.

∗ Else if there exists an ordinary answer entry of the form
〈Q@S, AID, C, UPIDs〉, then for each ordinary answer entry
〈Q@S, AID, Ca, UPIDs〉 s.t. pconst(P )∧Ca is consistent, we do
the following:

(a) We create a new process
〈newPID, newC, GS, {}, AA〉 where
· newPID is a new process ID.
· newC := pconst(P ) ∧ Ca

· GS := GS\{Q@S}



· AA := aa(P ) ∪ {〈Q@S, AID〉}.
(b) For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P ),

ups(A) := ups(A) ∪ {pid(P )}.
2. We associate P with Q@S as follows.
∗ If there is an original answer entry Ao = 〈Q@S, o, true, UPIDso〉,

then ups(Ao) := UPIDso ∪ {pid(P )}.
∗ Else if there is no original answer entry of the form
〈Q@S, o, true, UPIDs〉, we create an answer entry
〈Q@S, o, true, {pid(P )}〉, and send a question Q to S.

3. wa(P ) := {〈Q@S, o〉}

3.4 Fact Arrival Phase

Suppose that an answer is returned from an agent S for a question Q@S of
the form 〈Q@S, AID, C〉. Then, we do the following after one step of process
reduction is finished.

– If there is no answer entry of the form 〈Q@S, AID, Cf , UPIDs′〉9,
1. We create an answer entry 〈Q@S, AID, C, UPIDs〉 where UPIDs is set

to ∅ initially, but will be incremented as shown below.
2. For every default answer entry for a default d of the form
〈Q@S, d, Cd, UPIDsd〉 and for every process Pd such that pid(Pd) ∈
UPIDsd, we do the following:
• If Pd is a finished process of the form 〈Qinit@Sself , P ID, CFinal〉 s.t.

C∧CFinal 6= CFinal, we send an answer of the form 〈Qinit@Sself , P ID, C∧
CFinal〉 to the asking agent S ′.

• If Pd is an ordinary process,
(a) wa(Pd) := wa(Pd) ∪ {〈Q@S, d〉}
(b) aa(Pd) := aa(Pd)\{〈Q@S, d〉}
(c) If C ∧ pconst(Pd) is consistent, we do the following.

i. We create the following process
〈newPID, newC, GS, WA, AA〉 where
∗ newPID is a new process ID.
∗ newC := C ∧ pconst(Pd)
∗ GS := gs(Pd).
∗ WA = wa(Pd)
∗ AA=aa(Pd)∪{〈Q@S, AID〉}\{〈Q@S, d〉}

ii. UPIDs := UPIDs ∪ {newPID}.
3. Pick up the original answer entry of the form 〈Q@S, o, true, UPIDso〉.
4. For every process Po such that pid(Po)∈UPIDso and C∧pconst(Po)∧∧

(Q@S←Cd‖)∈∆ ¬Cd is consistent, do the following:

(a) We create the following process
〈newPID, newC, GS, WA, AA〉 where
• newPID is a new process ID.

9 This means that the arriving answer is an alternative answer to the query Q@S.



• newC :=C∧pconst(Po)∧
∧

(Q@S←Cd‖)∈∆ ¬Cd

• GS := gs(Po).
• WA := wa(Po)\{〈Q@S, o〉}
• AA := aa(Po) ∪ {〈Q@S, AID〉}

(b) UPIDs := UPIDs ∪ {newPID}.

– Else if there is an answer entry of the form 〈Q@S, AID, Cf , UPIDs′〉10,
1. We change 〈Q@S, AID, Cf , UPIDs′〉 into 〈Q@S, AID, C, UPIDs〉 where

UPIDs := UPIDs′ initially but will be incremented/decremented as
shown below.

2. For every process P such that pid(P ) ∈ UPIDs′ do the following:

• If P is a finished process of the form 〈Qinit@Sself , P ID, CFinal〉 s.t.
C ∧ CFinal 6= CFinal, we send an answer of the form
〈Qinit@Sself , P ID, C ∧ CFinal〉 to the asking agent S ′.

• If P is an ordinary process,
∗ If C ∧ pconst(P ) is consistent,

pconst(P ) := C ∧ pconst(P ).
∗ Otherwise, delete P and

UPIDs := UPIDs\{pid(P )}.
3. Pick up the original answer entry of the form 〈Q@S, o, true, UPIDso〉.
4. For every process Po such that pid(Po) ∈ UPIDso and C ∧pconst(Po)∧
¬Cf is consistent, we do the following:

(a) We create the following process
〈newPID, newC, GS, WA, AA〉 where
• newPID is a new process ID.
• newC := C ∧ pconst(Po) ∧ ¬Cf

• GS := gs(Po).
• WA := wa(Po)\{〈Q@S, o〉}
• AA := aa(Po) ∪ {〈Q@S, AID〉}

(b) UPIDs := UPIDs ∪ {newPID}.

3.5 Execution Trace Example

We show a part of an execution trace for a question rsv(R, L, D) in Example 1. In
this trace, we consider a scenario which highlights process updates upon arrivals
of an alternative answer and revised answer. We firstly give the initial process
〈p0, {}, {rsv(R, L, D)}, {}, {}〉.

1. Select process p0 and reduce it to p1, p2, p3.
Processes:
〈p1,{R= tr, L=[a, b]}, {fr(D)@a, fr(D)@b},{},{}〉,
〈p2,{R=sr, L=[a]}, {fr(D)@a, bs(D)@b},{},{}〉,
〈p3,{R=sr, L=[b]}, {bs(D)@a, fr(D)@b},{},{}〉

10 This means that the arriving answer is a revised answer of one of the previous answer
to the query Q@S.



2. Select p1, and ask a question fr(D)@a, and create answer entries for
fr(D)@a and new processes p4, p5 for default answers.
Answer entries:
〈fr(D)@a, o, true, {p1}〉,
〈fr(D)@a, d1, {D = 1}, {p4}〉,
〈fr(D)@a, d2, {D = 2}, {p5}〉
Processes: p2, p3,

〈p4, θtr ∪ {D = 1}, {fr(D)@b}, {}, {〈fr(D)@a, d1〉}〉11,
〈p5, θtr ∪ {D = 2}, {fr(D)@b}, {}, {〈fr(D)@a, d2〉}〉,
〈p1, θtr, {fr(D)@b}, {〈fr(D)@a, o〉}, {}〉

3. Suppose that 〈fr(d)@a, a1, {D = 2}〉 is returned from the agent a. We sus-
pend p4 and p5 since they use a default answer and then create new processes
p6 from p5 since the default answer used in p5 is consistent with the returned
answer. Note that we create no new process from p1 since the returned an-
swer contradicts one of negations of default answers.
Answer entries: frao, frad1

, frad2

12,
〈fr(D)@a, a1, {D = 2}, {p6}〉
Processes: p1, p2, p3,

〈p6, θtr2, {fr(D)@b}, {}, {〈fr(D)@a, a1〉}〉,
〈p4, θtr1, {fr(D)@b}, {〈fr(D)@a, d1〉}, {}〉,
〈p5, θtr2, {fr(D)@b}, {〈fr(D)@a, d2〉}, {}〉13

4. Suppose that 〈fr(D)@a, a2, {D = 3}〉 is returned from the agent a. Since
this has the different answer ID from the previous answer in the last step,
this answer is an alternative answer. Then, we create a new process from p1

which is the original process for query fr(D)@a. Note that we create no new
process from the processes created by default answers for fr(D)@a since this
answer contradicts the defaults.
Answer entries: frao, frad1

, frad2
, fraa1

14,
〈fr(D)@a, a2, {D = 3}, {p7}〉
Processes: p1, p2, p3, p4, p5, p6,

〈p7, θtr ∪ {D = 3, D 6= 1, D 6= 2}, {fr(D)@b}, {}, {〈fr(D)@a, a2〉}〉

5. Suppose that 〈fr(D)@a, a1, {D = 1}〉 is returned from the agent a. The ID
a1 for the returned answer indicates that this answer is a revised answer for
“D = 2”. Therefore, we revise every process using a1 which is recorded in the
answer entry fraa1

. This is p6, but its associated constraint is contradictory
with the returned answer, and therefore we kill this process. Then, we create
a new process p8 from p1.

11 θtr = {R = tr, L = [a, b]}.
12 frao = 〈fr(D)@a, o, true, {p1}〉,

frad1
= 〈fr(D)@a, d1, {D = 1}, {p4}〉,

frad2
= 〈fr(D)@a, d2, {D = 2}, {p5}〉.

13 θtr2 = θtr ∪ {D = 2} and θtr1 = θtr ∪ {D = 1}.
14 fraa1

= 〈fr(D)@a, a1, {D = 2}, {p6}〉.



Answer entries: frao, frad1
, frad2

, fraa2

15,
〈fr(D)@a, a1, {D = 1}, {p8}〉
Processes: p1, p2, p3, p4, p5, p7,

〈p8, θtr ∪ {D = 1, D 6= 2}, {fr(D)@b}, {}, {〈fr(D)@a, a1〉}〉

4 Correctness of the Operational Model

We guarantee that the above operational model gives a correct answer w.r.t. the
most recent replies. Let us note that we assume that the order of reply messages
is preserved.

Theorem 1. Let 〈Σ, ∆,P〉 be a framework for speculative constraint computa-

tion. Suppose that there is an ordinary process P such that gs(P ) = wa(P ) = ∅
for the initial query Qinit. Let

R = {“Q@S ← C‖” | there exists an answer entry 〈Q@S, AID, C, UPIDs〉

s.t. 〈Q@S, AID〉 ∈ aa(P )}.

Then, there exists an answer constraint C ′ w.r.t. Qinit, the framework and R
s.t. πV (pconst(P )) entails πV (C ′), where V is the set of the variables that occur

in Qinit, and πV is the projection of constraints onto V .

5 Space complexity of our approach

Our approach, compared to traditional approaches (no belief revision), generates
an additional cost in terms of space. In this section, we briefly show that the
additional cost in space is linear. This cost is observed based on the size of the
set PS of processes related to the revised or alternative answer to handle.

When a revised answer comes, say Cr, as shown in Fig. 4:

– if Cr entails the previous answer, say Cf , PS either remains the same size,
or reduces (because some processes in PS may now have inconsistent con-
straints and therefore be killed);

– if Cr is inconsistent with Cf , then all the processes using Cf in PS are killed,
the original suspended processes are duplicated and resumed with Cr, and
therefore PS grows by at most the number of original suspended processes;

– if Cr is consistent with Cf but does not entail it, PS grows by at most the
number of original suspended processes.

These three cases exhibit only linear (or less) behavior.
When an alternative answer comes, say Ca, as shown in Fig. 3, all the sus-

pended processes created on the arrival of the first answer, as well as the original
suspended processes, are duplicated and resumed with Ca. Therefore, PS grows
by at most the number of these suspended processes.

As briefly covered here, the growth of the set of processes on the arrival of
revised and alternative answers follows a linear behavior.
15 fraa2

= 〈fr(D)@a, a2, {D = 3}, {p7}〉.



6 Conclusion

In this paper, we presented an operational model for speculative constraint pro-
cessing with iterative revision for alternative answers. This paper is a general-
ization of two previous works; the work of revisable speculative computation for
yes/no questions [6] and the work of non-revisable speculative computation for
queries with constraints [4].

As future work, we will prove correctness and completeness for more general
forms of multi-agent systems, where every agent can perform speculative compu-
tation. Our current framework is focused on master-slave multi-agent systems,
and defines the operational model of master agents. To handle a more general
multi-agent system, we need to guarantee the appropriate computation of the
overall system by additionally considering communication paths among agents.
As another direction, we will also consider applications for this framework.

References

1. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint
logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

2. S. Janson and S. Haridi. Programming paradigms of the andorra kernel language.
In Proc. of ISLP’91, pages 167–186, 1991.

3. R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
In Annals of Mathematics and Artificial Intelligence, volume 25, pages 391–419,
1999.

4. K. Satoh, P. Codognet, and H. Hosobe. Speculative constraint processing in multi-
agent systems. In Proc. of PRIMA2003, LNCS 2891, pages 133 – 144, 2003.

5. K. Satoh, K. Inoue, K. Iwanuma, and C. Sakama. Speculative computation by
abduction under incomplete communication environments. In Proc. of ICMAS2000,
pages 263–270, 2000.

6. K. Satoh and K. Yamamoto. Speculative computation with multi-agent belief revi-
sion. In Proc. of AAMAS2002, pages 897 – 904, 2002.

7. C. Schulte. Programming constraint services: High-level programming of standard
and new constraint services. In LNCS, volume 2302. Springer Verlag, 2002.


