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Abstract. We present a weak multi-agent system of Only knowing and
an analysis of the logical spaces that can be defined in it. The logic
complements the approach to generalizing Levesque‘s All I Know system
made by Halpern and Lakemeyer. A novel feature of our approach is
that the logic is defined entirely at the object level with no reference to
meta-concepts in the definition of the axiom system. We show that the
logic of Halpern and Lakemeyer can be encoded in our system in the
form of a particular logical space.

1 Introduction

Multi-agent belief logics can be viewed as systems designed for the represen-
tation of representations (or languages) that agents use for reasoning about
other agents’ cognitive states. A multi-agent only knowing system has language
constructs for representing upper and lower bounds of beliefs; it thereby has
constructs for expressing the exact content of an agent’s belief state. A variety
of multi-modal only knowing languages have been analyzed in [5]. However, to
represent defeasible patterns of reasoning in a multi-agent context, only knowing
systems in which the underlying modal belief logic is K45 are particularly inter-
esting. A natural way to design such systems is to generalize the only knowing
system of Levesque [7] to the multi-modal case.

This is, however, a non-trivial task; the tricky part of this is hidden in an
axiom (which we shall refer to as the ♦-axiom) to the effect that ♦ϕ (ϕ is logically
possible) is an axiom for each satisfiable, objective ϕ (“objective” because it does
not contain any modal operators). In a series of papers [2–4, 6] Halpern and
Lakemeyer have attempted to formulate an appropriate generalization of this
axiom in a multi-modal language; in the solution they end up with they enrich
the object language with constructs for coding the satisfiability relation into the
system. They also provide their analysis with a canonical model semantics. This
semantics has, however, limited power, since the only model they allow is defined
on the uncountable set of all maximally consistent sets.

In [12] the second author introduced another generalization of the only know-
ing system of Levesque [7] to the multi-modal case which does not use meta-
language operators. The ♦-axiom is instead generalized to the statement that



♦aϕ is an axiom for each consistent a-objective ϕ (a-objective because any occur-
rence of an a-modal operator is within the scope of a b-modal operator, a �= b).
He proves consistency of the system LI by proving that a complete subset of
the language has a cut-free sequent calculus. He also proves that LI is indeed
equivalent to the system that Halpern and Lakemeyer claim is the correct multi-
modal generalization of Levesque’s system for the common part of the languages
(i.e. formulae without the meta-concept operators).

We propose yet another solution based on a constructive explication of the
concept of a logical space. Intuitively, the function of a logical space is to explicate
every logical possibility of the logic. This is what has been done in the single-
agent only knowing system Æ presented in the paper by Lian et al. [8] and further
analyzed in [11]. A logical space in Æ is a formula λ such that for each purely
Boolean ϕ, either λ � ♦ϕ or λ � ¬♦ϕ. Compared to the only knowing system of
Levesque, the system Æ has an increased expressive power due to the possibility
of varying the logical space, where the ♦-axiom of Levesque corresponds to only
one of many possibilities.

This paper provides a generalization of the system Æ to the multi-agent case,
and hence also provides a solution to the problem with the generalized ♦-axiom.
In the single-agent case, the set of possibilities is derived from a set of formulae
from the language of propositional logic. The formulae of this particular set are
referred to as atoms. Where α is an atom describing a logical possibility, the
logical space λ is defined such that ♦α is entailed by λ. In the multi-agent case,
we aim at defining a logical space λa for each agent a, such that ♦aϕ is entailed
by λa for each ϕ representing a logical possibility to agent a.

By providing logical spaces as a solution to the problem with the ♦-axiom,
we need not encode meta-concepts into the language, nor refer to such concepts
in the definition of the axiom system.

In order to bring the task of defining a multi-agent logical space to a man-
ageable level, we will address the problem inductively at different levels of com-
plexity, each level corresponding to a sub-language within which the set of pos-
sibilities is outlined. The base case is equivalent to the single agent case: Let
L0 denote the language of propositional logic. The set of possibilities is derived
by closing a subset of L0 under the ♦a-operator for each agent a. The resulting
set of formulae is then a subset of the language of the next level, denoted L1.
Inductively, the set of possibilities for agent a at level k + 1 is derived from a
subset of the a-objective formulae of Lk.

The main task of this paper is to construct the sets of formulae that, for
each agent and each language level, express each and every logical possibility.
We propose this as a replacement of the ♦-axiom of Levesque. In Sect, 4, we will
show how the logic of ÆI applies to examples from the paper of Halpern and
Lakemeyer [4]. In Sect. 6, we prove the equivalence between the systems ÆI and
LI , and hence the equivalence between the system of Halpern and Lakemeyer
[4], where a particular logical space is added to the axioms of ÆI .

In [13] a modal reduction property for LI is established, which states that
any “only knowing” expression is provably equivalent to a disjunction of “only



knowing” expressions of a particular simple form. Each of these latter expressions
provides us with an explicit syntactical representation of a particular model of
the original formula. The latter expressions explicitly characterize the possible
cognitive states of the agent, given the initial “only knowing” expression. In Sect.
5 we shall see that the same property holds also in ÆI .

2 The Logic ÆI

2.1 Syntax

The object language L contains a countable set of propositional letters P , the
propositional constant ⊥, the Boolean connectives ¬ and ∧ and the modal op-
erators Ba and Ca for each a in a countable non-empty set of indices I. The
index set I represents the set of agents, Ba is a belief operator, and Ca is a
complementary co-belief operator for agent a ∈ I. The propositional constant
� is defined as ¬⊥, while the Boolean connectives ∨, ⊃ and ≡ are the usual
abbreviations. Other modal operators defined as abbreviations are the follow-
ing: baϕ (ϕ is compatible with belief) is ¬Ba¬ϕ, caϕ (ϕ is compatible with
co-belief) is ¬Ca¬ϕ, �aϕ (ϕ is necessary) is Baϕ∧Caϕ and ♦aϕ (ϕ is possible)
is baϕ∨caϕ. Observe that necessity and possibility are relative to the extension
of a given agent’s belief and co-belief; the notion of necessity hence captures
personal necessity.

The more accurate interpretation of the Ba-operator is that a formula Baϕ
states that agent a believes at least ϕ to be true, but perhaps more. The Ba-
operator thus puts a lower bound on the extension of belief. The complementary
operator Ca puts an upper bound on the belief in the sense that a formula Caϕ
states that agent a believes at most ϕ to be false, but perhaps less. The formula
Baϕ ∧ Ca¬ϕ states that ϕ is exactly what is believed. The introduction of the
Ca-operator thus allows an “All a knows”-proposition Oaϕ to be defined as
Baϕ ∧ Ca¬ϕ.

A formula not mentioning any modal operators is called purely Boolean. ϕ is
an a-modal atom if it is of the form Baϕ or Caϕ, a ∈ I. An a-modal literal is an
a-modal atom or the negation of an a-modal atom. ϕ is a completely a-modalized
formula if it is a Boolean combination of a-modal atoms. ϕ is free of modality
a if it is a Boolean combination of propositional letters and modal atoms not
of modality a. ϕ is a first-order formula if, for each a ∈ I and each subformula
Baψ and Caψ in ϕ, ψ is free of modality a. If Γ is a set of formulae, Γ \a = {ϕ ∈
Γ | ϕ free of modality a} and Γ a = {ϕ ∈ Γ | ϕ completely a-modalized}. If Γ
is a set of formulae, Sf(Γ ) denotes the set of subformulae of the formulae in Γ .
When Γ is a singleton set containing ϕ, Sf(ϕ) denotes Sf({ϕ}).

The modal depth d(ϕ) of a formula ϕ expresses the nesting of alternat-
ing modalities in ϕ. Formally, the modal depth of a purely Boolean ϕ is 0.
Otherwise, if ϕ is Baψ or Caψ, let Ψ be the set of modal atoms which oc-
cur as subformulae in ψ. Then d(ϕ) is the maximal number in {d(χ) + 1 |
χ ∈ Ψ and χ is not a-modalized} ∪ {d(χ) | χ ∈ Ψ and χ is a-modalized}. Other-
wise, the modal depth of ϕ is the maximal d(ψ) for a subformula ψ of ϕ. The



modal depth of an a-modal formula ϕ is hence increased by prefixing ϕ with any
other modal operator than an a-modal operator.

If Γ is a set of formulae, Γk = {ϕ ∈ Γ | d(ϕ) ≤ k}. We will in this paper be
interested in sub-languages relative to a given modal depth and a given agent.
Since L denotes the language of ÆI (which is just a set of formulae) these
sublanguages are denoted Lk, L\a

k and La
k following the set indexing notation

introduced above.
A tautology is a substitution instance of a formula valid in propositional logic,

e.g. �aϕ ⊃ �aϕ. The deducibility relation ’�’ of the logic ÆI is defined as the
least relation that contains all tautologies, is closed under all instances of the
rules

� ϕ

� �aϕ
(RN)

� ϕ � ϕ ⊃ ψ

� ψ
(MP)

and contains all instances of the following schemata for each a ∈ I:

KB: Ba(ϕ ⊃ ψ) ⊃ (Baϕ ⊃ Baψ) B�: ¬Baϕ ⊃ �a¬Baϕ
KC: Ca(ϕ ⊃ ψ) ⊃ (Caϕ ⊃ Caψ) C�: ¬Caϕ ⊃ �a¬Caϕ
B�: Baϕ ⊃ �aBaϕ T : �aϕ ⊃ ϕ
C�: Caϕ ⊃ �aCaϕ

We write � ϕ if ϕ is theorem of ÆI , and ϕ1, . . . , ϕn � ψ for � (ϕ1∧· · ·∧ϕn) ⊃
ψ. Γ � ϕ means that there is a finite number of formulae γ1, . . . , γn in Γ such
that γ1, . . . , γn � ϕ. If Γ � ⊥, Γ is inconsistent otherwise Γ is consistent. We
will without reference use the well-known principles of modal logic, especially
substitution of provable equivalents, the derived rule

ϕ1, . . . , ϕn � ψ

Baϕ1, . . . ,Baϕn � Baψ

and the corresponding rule for Ca.

Lemma 1. �a is an S5 modality.

Lemma 2. Any formula is provably equivalent to a first-order formula with the
same modal depth.

The former of these two results is Lemma 1 of [13]; the latter is Lemma 2 of
[12]. For proofs and further details about the results in the rest of this section,
the reader may consult [13].



2.2 Semantics

A frame is a structure (W, {Ra, Sa | a ∈ I}), where W is a non-empty set of
points and Ra and Sa are binary relations satisfying the following two conditions:

(f1) Let X be either Ra or Sa and Y be either Ra or Sa or their complements
Ra or Sa. Then the composition X ◦ Y ⊆ Y .

(f2) Ea = Ra ∪ Sa is reflexive.

Note that in standard terminology two of the eight subconditions of (f1)
state that Ra and Sa are transitive, e.g. Ra ◦ Ra ⊆ Ra, while two of them state
that they are Euclidean, e.g. Ra ◦ Ra ⊆ Ra.

Lemma 3. Ea is an equivalence relation.

An a-cluster is an equivalence class of W modulo Ea. Let C be an a-cluster.
We define the belief part C+ and the co-belief part C− of C by: C+ = {x ∈ C |
xRax} and C− = {x ∈ C | xSax}. C is bisected if C+ ∩ C− = ∅.
Lemma 4. C = C+ ∪ C−.

A model M = (W, {Ra, Sa | a ∈ I}, V ) is a frame with a valuation function
V , which maps each propositional letter onto a subset of W . The satisfiability
relation �x, x ∈ W , is defined by

M �x p ↔ x ∈ V (p), p a propositional letter,
M �x ¬ϕ ↔ M �x ϕ,
M �x Baϕ ↔ ∀y (xRay → M �y ϕ),
M �x Caϕ ↔ ∀y (xSay → M �y ϕ),

and in the usual way for the other Boolean connectives. We write M |=X ϕ iff
(∀x ∈ X)(M |=x ϕ). A formula is valid in a frame if it is true at all points in
all models on the frame. If ϕ is valid in all frames, we write � ϕ, and say that
ϕ is valid. Γ |= ϕ means that for all models, ϕ is true at all points which satisfy
all formulae in Γ . Note that if C is an a-cluster, all points in C agree on every
completely a-modalized formula in every model on the frame.

Theorem 1. ÆI is sound, complete and decidable.

Proof. This can be proved by the use of standard techniques from modal logic,
see [13]. ��

3 Finitely Bound Sublanguages

The syntax and semantics of the previous section generalize the syntax and
semantics of the system Æ to the multi-agent case. What remains to be done is
to generalize the notion of a logical space to the multi-agent case. The properties
of the single-agent logical space will serve as guiding principles for our multi-
agent generalization.



In the single-agent case, under the assumption that there are finitely many
propositional letters in the language, say p1, . . . , pm, an atom is defined as a
conjunction ±p1 ∧ · · · ∧ ±pm, where ±p means either p or ¬p. An atom can be
interpreted as characterizing the material content of a state of affairs. There are
2m atoms. Where α1, . . . , αn characterize the conceivable states of affairs, the
logical space is defined as the formula

♦α1 ∧ · · · ∧ ♦αn ∧ �(α1 ∨ · · · ∨ αn).

In the maximal logical space, all atoms are possible, i.e. n = 2m.
The notion of a logical space is a notion of personal necessity. To see this,

observe that we may define a logical space such that concepts that intuitively are
logically independent are related in the logic at the level of necessity. We may
e.g. define a logical space λ such that λ � �(penguin(Tweety) ⊃ bird(Tweety)).

In order to define a multi-agent logical space, we need to generalize the notion
of an atom. To do this, we first define a finite multi-modal language. For such
a language to be finite, the set of propositional letters and the set of different
modalities, i.e. the index set I, obviously need to be finite. Furthermore, as we
may construct new formulae by prefixing a formula free of modality a with any
a-modal operator, the finite language must be bound by a limit on modal depth.
Under the assumption that the set of propositional letters and the set of agents
are finite, we will for each modal depth k operate with the sublanguage Lk.

The notion of an atom is a twin to the notion of a complete theory. Given any
language L∗, a formula ϕ ∈ L∗ is a complete theory for L∗ iff for all formulae ψ ∈
L∗, either ϕ � ψ or ϕ � ¬ψ. The modal language of Æ, denoted L1 for a singleton
set I, can be seen as representations of formulae from L0, i.e. the language of
propositional logic. As an atom can be interpreted as a propositional valuation, it
is easy to see that each atom is a complete theory for L0. Generalizing this to the
multi-agent case is to say that a multi-modal language is a language representing
representations in a modal language, the first capturing the cognitive state of a
given agent a, the latter representing the material content of states of affairs as
well as the cognitive state of every agent different from a. The latter language
is then denoted by L\a

k for some given integer k, the former the closure of L\a
k

under the a-modal operators. A complete theory for L\a
k is thus a complete

characterization of the material content of a state of affairs in addition to a
complete characterization of the cognitive state of every agent different from a
given agent a.

The notion of a complete theory may then serve as a test for deciding whether
a suggested multi-modal logical space is a correct generalization of the single-
agent logical space. In other terms, if ♦aϕ1 ∧ · · · ∧ ♦aϕn ∧ �a(ϕ1 ∨ · · · ∨ ϕn) is
a multi-modal logical space for a given agent a, where {ϕ1, . . . , ϕn} ⊆ L\a

k for
a given integer k, then each ϕ ∈ {ϕ1, . . . , ϕn} should be a complete theory for
L\a

k .
We will use the following notation for the distribution of a modality over a

set of formulae: BaΓ = {Baγ | γ ∈ Γ}, and the same for any other modality.



Definition 1. Let Φ ⊆ L\a. The functions Bela, Cobela and Lspacea, all of them
from a set of formulae free of modality a to a completely a-modalized formula,
are defined as follows:

Bela(Φ) =
∧

baΦ ∧Ba(
∨

Φ),

Cobela(Φ) =
∧

caΦ ∧Ca(
∨

Φ),

Lspacea(Φ) =
∧

♦aΦ ∧ �a(
∨

Φ).

Lspacea(Φ) is the logical space for agent a spanned by Φ. If Φ+ ∪ Φ− = Φ, then
Bela(Φ+) ∧ Cobela(Φ−) is a doxastic a-alternative spanned by Φ. Notice that a
doxastic a-alternative spanned by Φ entails Lspacea(Φ). The set of all doxastic
a-alternatives spanned by every nonempty subset of Φ is denoted Doxa(Φ).

Two properties will play a central role in our analysis. A set of formulae Φ
satisfies the strong independence property if every two elements of Φ are consis-
tent iff they are equivalent. Φ is L∗-saturated if Φ ⊆ L∗ and every formula ϕ ∈ L∗

is equivalent to a disjunction of formulae in Φ (L∗ any language addressed in
this paper).

Lemma 5. If Φ ⊆ L\a satisfies strong independence, then so does Doxa(Φ).

Proof. Let δ1 and δ2 be two distinct elements of Doxa(Φ). Then δ1 and δ2 must
disagree on the belief set or the co-belief set. We treat the former. Let δ1 �
Bela(Γ1) and δ2 � Bela(Γ2). There is then a formula ϕ such that either ϕ ∈ Γ1

and ϕ /∈ Γ2 or vice verca. In the first case, ϕ ∧ γ � ⊥ for each γ ∈ Γ2 by strong
independence. Hence ϕ ∧ ∨

Γ2 � ⊥. By modal logic, Ba(
∨

Γ2) � Ba¬ϕ. Since
δ2 � Ba(

∨
Γ2) and δ1 � baϕ, we get δ1 ∧ δ2 � ⊥. The latter case is symmetrical.

��
Lemma 6. Let L∗ be any Boolean closed set of formulae and Φ be L∗-saturated.
Then � ∨

Φ.

Proof. Assume that ¬∨
Φ is consistent. Since Φ is L∗-saturated and L∗ is

Boolean closed, there must then be a non-empty set Γ ⊆ Φ such that � ∨
Γ ≡

¬∨
Φ. But this is clearly impossible. ��

Lemma 7. Let Φ be L\a
k -saturated. Then Doxa(Φ) is La

k+1-saturated.

Proof. Let ϕ ∈ La
k+1. We may without loss of generality assume that ϕ is first-

order. Since Φ is L\a
k -saturated, the formulae inside the scope of the a-modalities

are equivalent to disjunctions of formulae from Φ. By standard propositional
reasoning and normal modal logic and, ϕ is equivalent to a formula on DNF,
where each disjunct is of the form ψ =

∧
baΓ1 ∧Ba(

∨
Γ2)∧

∧
caΓ3 ∧Ca(

∨
Γ4),

Γ1, . . . , Γ4 subsets of Φ. Let

∆ = {δ ∈ Doxa(Φ) | δ = Bela(Φ+) ∧ Cobela(Φ−), Γ1 ⊆ Φ+ ⊆ Γ2, Γ3 ⊆ Φ− ⊆ Γ4}.



Then � ψ ≡ ∨
∆. To see that

∨
∆ � ψ, observe that if Γ1 ⊆ Φ+, then Bela(Φ+) �

baγ for each γ ∈ Γ1, and if Φ+ ⊆ Γ2, then Ba(
∨

Φ+) � Ba(
∨

Γ2). Conversely,
assume that ψ �

∨
∆, i.e. that ψ is consistent with ¬∨

∆. This entails that ψ
is consistent with a formula θ constructed as a conjunction out of the negation
of one conjunct from each δ in ∆. But by construction of ψ there is no such θ
which is consistent with ψ. ��

Lemma 8. Let Φ be L\a
k -saturated and satisfy strong independence, and let δ

be a doxastic a-alternative spanned by Γ ⊆ Φ. Then δ is a complete theory over
La

k+1.

Proof. We need to prove that either δ � ψ or δ � ¬ψ for every ψ ∈ La
k+1.

By Lemma 2, we may without loss of generality assume that ψ is first-order.
The result for Boolean combinations of formulae follows easily once the result is
established for modal atoms. It suffices to deal with the case where ψ is of the
form Baϕ, as the other cases are symmetrical.

Let δ � Bela(Γ1) and � ϕ ≡ ∨
Γ2, Γ1 and Γ2 subsets of Φ. There are two

cases. Either Γ1 ⊆ Γ2, or there is a formula γ such that γ ∈ Γ1 and γ /∈ Γ2. In the
first case,

∨
Γ1 � ∨

Γ2. By modal logic, Ba(
∨

Γ1) � Ba(
∨

Γ2), and so δ � Baϕ.
In the second case, γ ∧ ∨

Γ2 � ⊥ by strong independence. By modal logic,
baγ � ba¬(

∨
Γ2). Since δ � baγ, we get that δ � ba¬(

∨
Γ2), i.e. δ � ¬Baϕ. ��

We are now ready to generalize the single-agent notion of an atom to the
multi-agent case. In the single agent case, an atom α can be interpreted as a
complete characterization of the material content of a state of affairs. In the
multi-agent case, we want for each agent ai ∈ I, I = {a1, . . . , am}, and each
modal depth k to define a doxastic alternative δi, such that δi completely char-
acterizes the cognitive state of agent ai. A conjunction α∧ δ1 ∧· · ·∧ δm is then a
complete characterization of the material content of a state of affairs, as well as
a complete characterization of the cognitive state of every agent. As we shall see,
the conjunction α ∧ δ1 ∧ · · · ∧ δm is a complete theory for Lk. This conjunction
will be referred to as an I-atom with depth k.

Given a set of I-atoms with depth k, the doxastic alternatives for agent a
with depth k + 1 will be defined over this set. Intuitively, where Φ is the set
of I-atoms with depth k, the set of formulae Doxa(Φ) is the set of doxastic a-
alternatives with depth k + 1. This is, however, not the correct generalization
of the single agent case, since in the single-agent case, a doxastic alternative is
defined over a set of purely Boolean formulae. Generalizing this is to define a
doxastic alternative for agent ai over a set of formulae free of modality a. To
this end, we will define a set of formulae from L\a

k each formula of which forms
a complete theory for L\a

k .

Convention. Let ϕ = α∧ δ1 ∧· · ·∧ δm be a formula such that α ∈ L0 and δi

is a doxastic a-alternative. Then ϕ[ai/�] = α∧δ1∧· · ·∧δi−1∧�∧δi+1∧· · ·∧δm.
If Φ is a set of I-atoms, Φ[ai/�] = {ϕ[ai/�] | ϕ ∈ Φ}.



Definition 2 (I-atoms). The set of I-atoms Φk with depth k is defined as
follows: Φ0 is the set of atoms, while Φk+1 is all formulae α∧ δ1 ∧ · · · ∧ δm such
that

– α is an atom,
– δi is a doxastic ai-alternative spanned by the set Γi ⊆ Φk[ai/�],
– ∃ϕ ∈ Φk such that ϕ � α and for each ai, ϕ[ai/�] ∈ Γi.

From now on Φk refers to the set of I-atoms with depth k. The third condition
in the definition above is a consistency condition as witnessed by the following
result.

Lemma 9. Assume that each Φk satisfies strong independence and that Φk[a/�]
is L\a

k -saturated for each agent a. Let α be an atom and δi be a doxastic ai-
alternative spanned by Γi ⊆ Φk[ai/�]. Then α∧ δ1 ∧ · · · ∧ δm is consistent if and
only if ∃ϕ ∈ Φ such that ϕ � α and for each ai, ϕ[ai/�] ∈ Γi.

Proof. Note that if δi is spanned by the set Γi ⊆ Φk[ai/�], then δi � �ai(
∨

Γi).
By axiom T , δi �

∨
Γi. Since the conjuncts of ψ are of different modalities (the

atom purely Boolean, however), inconsistency of ψ can stem from axiom T only.
Hence, it suffices to prove that the consistency condition ensures consistency of
ψ = α ∧ ∨

Γ1 ∧ · · · ∧ ∨
Γm.

Also note that Φ0 is the set of atoms (which is trivially L0-saturated) and
that the condition for k = 1 then simply states that there is an atom α such
that α ∈ Γi for each Γi. If there is a Γi such that α /∈ Γi, Lemma 6 gives that∨

Γi � ¬α. Hence ψ is inconsistent. Conversely, if ψ is inconsistent, there must
be a Γi such that α /∈ Γi, and hence the condition is not satisfied.

If k > 1, suppose that the condition is not satisfied. Then, for each ϕ ∈ Φk

which entails α there is a Γi such that ϕ[ai/�] /∈ Γi. It follows from this that
given any two distinct sets Γi and Γj , each two elements ϕ1[ai/�] ∈ Γi and
ϕ2[aj/�] ∈ Γj must disagree on a doxastic al-alternative, ai �= aj �= al. In
other terms, there are two distinct doxastic al-alternatives δ1 and δ2 such that
ϕ1[ai/�] � δ1 and ϕ2[aj/�] � δ2. By the strong independence assumption,
δ1 ∧ δ2 � ⊥, and so ϕ1[ai/�] ∧ ϕ2[aj/�] � ⊥. Since this holds for any two
distinct sets Γi and Γj , ψ must be inconsistent.

Suppose conversely that ψ is inconsistent. There are two cases. In the first
case, there is a set Γi such that

∨
Γi � ¬α, i.e. for each ϕ ∈ Φk such that

ϕ � α, there is a set Γi such that ϕ[ai/�] /∈ Γi. Then the condition is not
satisfied. In the second case, there are two distinct sets Γi and Γj such that∨

Γi ∧
∨

Γj � ⊥. Then, for each two elements ϕ1[ai/�] ∈ Γi and ϕ2[aj/�] ∈ Γj ,
ϕ1[ai/�] ∧ ϕ2[aj/�] � ⊥. We may assume that α is entailed by both ϕ1 and ϕ2

since this was treated in the first case. Since ϕ1[ai/�] ∧ ϕ2[aj/�] � ⊥, the two
formulae must disagree on a doxastic al-alternative, and hence ϕ1 and ϕ2 are
two distinct elements of Φk. The condition is then not satisfied. ��



Lemma 10. The set Φk[a/�] satisfies strong independence.

Proof. The base case is when k = 0. Φ0[a/�] is the set of atoms, and it is imme-
diate that the set of atoms satisfies strong independence. Suppose inductively
that ϕ and ψ are two distinct elements of Φk+1[a/�]. Then ϕ and ψ either dis-
agree on an atom or on a doxastic b-alternative, b �= a. In the first case, it is
immediate that ϕ ∧ ψ � ⊥. In the second case, let ϕ � δ1

b and ψ � δ2
b , where δ1

b

and δ2
b are doxastic b-alternatives spanned by Γ1 and Γ2, respectively, Γ1 and

Γ2 subsets of Φk[b/�]. By the induction hypothesis, Φk[b/�] satisfies strong in-
dependence. By Lemma 5, δ1

b ∧ δ2
b � ⊥. Hence ϕ ∧ ψ � ⊥. ��

Corollary 1. The set of doxastic a-alternatives spanned by subsets of Φk[a/�]
satisfies strong independence.

Proof. Immediate from Lemma 10 and Lemma 5. ��

Lemma 11. Φk[a/�] is L\a
k -saturated and Doxa(Φk[a/�]) is La

k+1-saturated.

Proof. Both properties are proved by simultaneous induction on k. In the base
case Φ0 = Φ\a

0 . It is easy to see that the first condition holds. Since Φ0 is L0-
saturated, the second holds by Lemma 7.

Φk+1[a/�] is L\a
k+1-saturated (induction step). We have to prove that for each

ϕ ∈ L\a
k+1 there is a subset of Φk+1[a/�] the disjunction of which is equivalent to

ϕ. It is easy to see (using the DNF equivalent of each formula) that it is sufficient
to prove this for ϕ of the form ϕP ∧ϕa1 ∧ · · · ∧ϕam where ϕP is purely Boolean,
ϕa is � and every other ϕai is in Lai

k+1. Let the atom set ϕ̂P be the set of atoms
which imply ϕP , ϕ̂a be {�} and ϕ̂ai be the set of all δ ∈ Doxai(Φk[ai/�]) such
that δ � ϕ. Let ϕ̂ be the set of every formula α∧ δ1 ∧ · · · ∧ δm in Φk+1[a/�] such
that α ∈ ϕ̂P and δi ∈ ϕ̂ai .

It follows by construction that
∨

ϕ̂ � ϕ. Conversely, assume that ϕ is con-
sistent with ¬∨

ϕ̂. By induction hypothesis and Lemma 6, � Doxai(Φk[ai/�]).
This entails that there must be a consistent ψ of the form α∧δ1∧· · ·∧δm which
implies ϕ and which is not in Φk+1[a/�]. But this is only possible if δ violates
the third subcondition in the definition of Φk+1 (Definition 2). By Lemma 9, ψ
is inconsistent. Contradiction. Hence � ϕ ≡ ∨

ϕ̂.
Doxa(Φk[a/�]) is La

k+1-saturated (induction step). By the induction hypoth-
esis, Φk[a/�] is L\a

k -saturated. Then, by Lemma 7, Doxa(Φk[a/�]) is La
k+1-

saturated. ��

Theorem 2. Each formula ϕ ∈ Φ\a
k is a complete theory over L\a

k . Each dox-
astic alternative δ ∈ Doxa(Φk[a/�]) is a complete theory over La

k+1.

Proof. By Lemma 10, Φk[a/�] satisfies strong independence and by Lemma 11
Φk[a/�] is L\a

k -saturated. By Lemma 8, each δ ∈ Doxa(Φk[a/�]) is a complete
theory over La

k+1. Since each δ ∈ Doxa(Φk−1[a/�]) is a complete theory over Lk,
it follows that each ϕ ∈ Φk[a/�] is a complete theory over L\a

k . ��



Having defined the set of I-atoms, we may now define the logical space for
the multi-agent case. A logical space of agent a up to depth k is defined over a
subset Γ of Φk[a/�] by the formula Lspacea(Γ ). Observe that for k = 0, the
logical space is defined by the formula Lspacea(∆), ∆ ⊆ Φ0, which is a logical
space as defined for the single-agent system Æ.

Corollary 2. Let λ be a logical space for agent a up to k and ϕ ∈ L\a
k . Then

either λ � ♦aϕ or λ � ¬♦aϕ.

4 Examples

In Section 6.1 of [4], Halpern and Lakemeyer give examples of how their logic
can be used to represent default reasoning in a multi-agent situation. We will
show how the inferences are carried out in the logic ÆI .

Example 1. The first example of Halpern and Lakemeyer is this. Let p be agent
a’s secret and suppose he makes the assumption that unless he believes that b
knows his secret, he assumes that she does not know it. We will now prove that
if this is all he believes and if it is conceivable that b does not know his secret,
then he believes that she does not know his secret. Formally, we show

λa ∧ Oa(¬BaBbp ⊃ ¬Bbp) � Ba¬Bbp,

where λa is the logical space of agent a. Let ϕ denote ¬BaBbp ⊃ ¬Bbp. Note
that the assumption that it is conceivable to a that b does not know his secret
implies that λa � ♦a¬Bbp. Let us turn to the formal derivation.

1. λa ∧ Oaϕ � Baϕ PL
2. λa ∧ Oaϕ � Ca¬ϕ PL
3. λa ∧ Oaϕ � (Baϕ ∧ ¬BaBbp) ⊃ Ba¬Bbp normal logic, ÆI

4. λa ∧ Oaϕ � Ca¬ϕ ⊃ (Ca¬BaBbp ∧ CaBbp) normal logic
5. λa ∧ Oaϕ � ♦a¬Bbp assumption
6. λa ∧ Oaϕ � CaBbp ⊃ ¬BaBbp 5, PL
7. λa ∧ Oaϕ � ¬BaBbp 2, 4, 6, PL
8. λa ∧ Oaϕ � Ba¬Bbp 1, 3, 7, PL

In the third line, we made use of the modal reductive strength of the logic. The
critical point in the derivation is of course the fifth line. This theorem rests on
the assumption that ¬Bbp is conceivable to agent a. The derivation in the system
of Halpern and Lakemeyer is somewhat longer, since they need to apply some
extra machinery to reason about validity and satisfiability.

The nonmonotonicity becomes apparent when we add Bbp to the belief set
of agent a, or we define the logical space such that λa � ¬♦a¬Bbp. Then BaBbp
is deducible.

Example 2. In their next example, Halpern and Lakemeyer show how one agent
reasons about another agent’s ability to reason nonmonotonically. The letter p



stands for “Tweety flies”. It is then shown that if a believes that all b believes
is that by default Tweety flies, then a believes that b believes that Tweety flies.

Again, it is the logical space that makes the deduction go through in our
system. But here, since a reasons about b’s ability to reason nonmonotonically,
if a is to derive the conclusion that b believes p, a must believe that the conceiv-
ability space of b is such that p is conceivable. I.e., the logical space λb of b must
be such that λb � ♦bp. Note that since the nonmonotonicity in this example is
about b, we need not consult the logical space of a.

What we want to prove is thus that

Ba(λb ∧Ob(bbp ⊃ p)) � BaBbp.

In the same pattern as in the previous example, we may show that λb∧Ob(bbp ⊃
p) � Bbp, given the assumption that λb � ♦bp. The difference is that we now
reason about agent b and that ¬Bbp is replaced with p. The desired result then
follows by normal logic.

The assumption we made that a believes λb is a stronger assumption than
what we actually need. It may very well be such that a believes that b has one
of several different conceivability spaces. The assumption we need is that every
logical space of agent b compatible with a’s beliefs must be such that ♦bp is
implied by it.

5 The Modal Reduction Theorem

We will in this section assume a sub-language Lk bound by a finite set of propo-
sitional letters P , a finite set of indices I and a given modal depth k. Let the
logical space λ of agent a be given, and let β be any formula. The modal reduc-
tion theorem states that there are formulae β1, . . . , βn free of modality a, such
that

λ � Oaβ ≡ Oaβ1 ∨ · · · ∨ Oaβn.

Moreover, each formula Oaβi, i ≤ m, is defined directly from one of the a-
clusters satisfying λ ∧Oaβ, and each such a-cluster is represented by a formula
Oaβi.

Let λ ∧ Oaϕ have depth k. We will say that λ ∧ Oaϕ is an explicit belief
representation if for any formula ψ ∈ La

k, either λ ∧ Oaϕ � ψ or λ ∧ Oaϕ � ¬ψ.
In other terms, an explicit belief representation is a formula that determines the
agent’s attitude towards any formula in the language.

Theorem 3. Let ϕ be any formula free of modality a. Then λ ∧ Oaϕ is an
explicit belief representation.

Related to the notion of an explicit belief representation is the notion of an
implicit belief representation, i.e. formulae of the form λ ∧ Oaϕ that allow am-
biguity with respect to a-modalized formulae. An implicit belief representation
is a formula λ ∧ Oaϕ where ϕ is not free of modality a. By applying the modal
reduction theorem, such formulae are reduced to disjunctions of formulae, each
of them an explicit belief representation.



6 Related Work

We will in this section prove the equivalence of the system ÆI with two earlier
attempts of generalizing the system of Levesque [7]. The first of these other
systems is the system HL of Halpern and Lakemeyer [4], where a generalization
of Levesque’s system is provided by coding the satisfiability relation into the
system. Notice that the language of HL is an extension of L. We will prove the
equivalence with ÆI with respect to the common part of the languages. The
second system is the system LI of Waaler [12], where the ♦-axiom of Levesque’s
system is generalized to the statement that ♦aϕ is a theorem provided that ϕ is
a consistent formula free of modality a.

The deducibility relations of HL and LI are denoted �HL and �LI , respec-
tively. In [12], the equivalence of LI and HL was established. We will in this
section prove the equivalence of the system ÆI and the system LI . The equiva-
lences of the three systems then follow as a corollary.

6.1 The system LI

Let �′ be the deducibility relation given by removing the axiom schema T from
the system ÆI . The deducibility relation �LI of the system LI is defined as the
least relation extending �′ containing every instance of the following schema for
each agent a ∈ I:

♦a : ♦aϕ provided ϕ �LI ⊥, ϕ free of modality a.

There is a circular pattern to the ♦a-axiom, but in [12], it is shown that the
circularity is not vicious. This result is captured by Lemma 12 below.

As in ÆI any formula is provably equivalent to a first-order formula in LI .
Moreover, T is a theorem of LI . Hence, LI is an extension of ÆI . For proof of
these claims consult [13].

6.2 Equivalence of ÆI and LI

LI is a proper extension of ÆI . However, equivalence between the systems can
be established for sublanguages up to a given depth by strengthening ÆI with
a particular set of formulae. In the single-agent case, when the maximal logical
space is added to the axioms of Æ, the system Æ is equivalent to the propositional
fragment of Levesque’s system. What we need to do in the multi-agent case is
to identify a set of formulae that, when added to the axioms of ÆI , yields
equivalence of ÆI and LI .

Definition 3 (Maximal I-atoms). The set of maximal I-atoms with depth k
is defined as follows: Φ0 is the set of atoms, while Φk+1 is all formulae α ∧ δ1 ∧
· · · ∧ δn such that

– α is an atom,
– δi is a doxastic ai-alternative spanned by Φk[ai/�],



The critical difference between the definition of a maximal I-atom and the
definition of an I-atom as defined in Definition 2 is that δi in the inductive
step of the definition of a maximal I-atom is spanned by Φk[ai/�], and not
subsets of Φk[ai/�]. The consistency condition is furthermore omitted. This is
because formulae α ∧ δ1 ∧ · · · ∧ δm trivially satisfy the consistency condition in
the definition of the maximal I-atoms. (We omit the easy proof of this claim.)

The maximal logical space of agent ai with depth k is now defined as λi =
Lspacea(Φk−1[ai/�]). We will prove that the set of formulae Λ = {λi | ai ∈ I}
added to the axioms of ÆI yields equivalence with LI up to depth k.

Before we proceed, we need an important result from [12]. This result states
that LI-consistency of a formula ϕ free of modality a is established without
reference to the theorem ♦aϕ.

Lemma 12. Let ϕ be LI-provable. Then there is an LI-proof π of ϕ such that
d(ψ) < d(ϕ) for every instance of an axiom ♦aψ which is used in π.

Theorem 4. Let Λ be the set of maximal logical spaces with depth k for each
agent ai ∈ I and d(ϕ) ≤ k. Then Λ � ϕ iff �LI ϕ.

Proof. The proof is by induction on the depth of the logical spaces, and both
directions are proved simultaneously. As � ⊆ �LI , we need for the ’only if’
direction to prove that �LI

∧
Λ. For the ’if’ direction, we need to prove that LI

is a strengthening of ÆI by
∧

Λ only. That is, we need to prove that ♦aiϕ is
deducible in ÆI from Λ, where ♦aiϕ is derivable in LI by an application of ♦ai

to a formula ϕ, where d(ϕ) < d(λi).
The base case is when each λi is spanned by the set of atoms Φ0. ’Only if’:

As every atom α is LI-consistent, �LI ♦aiα by the ♦ai -axiom, and since
∨

Φ0

is a PL-tautology, we get �LI �ai(
∨

Φ0) by RN. So �LI λi for every λi ∈ Λ.
’If’: Suppose �LI ♦aiϕ is deduced in LI by an application of ♦ai . It must then
be the case that ϕ is a purely Boolean formula such that ϕ �LI ⊥. Since LI

extends ÆI , ϕ � ⊥. There is then an atom α such that α � ϕ. By modal logic,
♦aiα � ♦aiϕ, and so λi � ♦aiϕ.

In the inductive step, let d(λi) = k+1, λi spanned by Φk[ai/�]. ’Only if’: We
need to establish that ψ �LI ⊥ for every ψ ∈ Φk[ai/�] and that �LI

∨
Φk[ai/�].

Once these two properties are established, we may apply ♦ai to the first and RN
to the latter to get the desired result.

Note that ψ is a conjunction of an atom and a doxastic aj-alternative δj for
each aj �= ai. Each δj entails the maximal logical space λ′

j , d(δj) = k. Let Λ′ be
the set of maximal logical spaces with depth k for each aj �= ai. By construction
of the logical space, we have ψ ∧Λ′

� ⊥. By the induction hypothesis, ψ �LI ⊥.
By axiom ♦ai , we get �LI ♦aiψ.

Let ∆j be the doxastic aj-alternatives spanned by Φk−1[aj/�]. Observe that
for each δj ∈ ∆j , d(δj) = k and δj � λ′

j , where λ′
j is the maximal logical space

with depth k for agent aj . Notice that the set of conjunctions of an atom and
a formula δj ∈ ∆j for each aj �= ai is exactly the set of formulae Φk[aj/�]. In
order to prove �LI

∨
Φk[ai/�], we will prove that �LI

∨
∆j for each aj �= ai.



The result then follows by standard propositional reasoning and the fact that
�LI

∨
Φ0.

We will first prove that λ′
j � ∨

∆j . Suppose that λ′
j �

∨
∆j , i.e. λ′

j ∧
¬(

∨
∆j) � ⊥. By Lemma 11, there is a doxastic aj-alternative δ′j with depth k

such that δ′j � λ′
j ∧ ¬(

∨
∆j). But then δ′j � λ′

j , and so δj ∈ ∆j . Contradiction.
Since λ′

j � ∨
∆j , we get �LI

∨
∆j by the induction hypothesis. �LI

∨
Φk[ai/�]

follows by standard propositional reasoning, and �LI �ai(
∨

Φk[ai/�]) by RN.
’If’: Suppose �LI ♦aiϕ, d(ϕ) < d(λi), λi ∈ Λ, is deduced in LI by an applica-

tion of ♦ai . It must then be the case that ϕ is a formula free of modality ai such
that ϕ �LI ⊥. By Lemma 12, any application of the ♦ai -axiom to establish the
consistency of ϕ is to formulae with depth < d(ϕ). By the induction hypothesis,
Λ′ ∧ ϕ � ⊥, where Λ′ is the set of maximal logical spaces with depth k for each
aj �= ai.

We may without loss of generality assume that ϕ is first-order and on DNF.
Since Λ′∧ϕ � ⊥, there is a disjunct ψ of φ such that Λ′∧ψ � ⊥. ψ is a conjunction
of a purely Boolean formula ψP and a completely aj-modalized formula ψaj for
each aj �= ai. Since λ′

j ∧ ψaj � ⊥, λ′
j ∈ Λ′, there is by Lemma 11 a doxastic

aj-alternative δj with depth k such that δj � λ′
j ∧ψaj . Let ∆ be the set of these

formulae δj for each aj �= ai. As to ψP , there is an atom α such that α � ψP .
Since each δj entails the maximal logical space, the consistency condition is
trivially satisfied, and so α ∧ ∆ � ⊥. Since each element of {α} ∪ ∆ entails a
respective conjunct of ψ, we have α ∧ ∆ � ψ, and so α ∧ ∆ � ϕ. Observe that
the conjunction α ∧ ∧

∆ is an element of Φk[aj/�] and that ♦ai(α ∧ ∧
∆) is a

conjunct of the maximal logical space λi with depth k. Since α∧∆ � ϕ, we have
♦ai(α ∧ ∧

∆) � ♦aiϕ by modal logic, and so λi � ♦aiϕ as desired. ��
Corollary 3. Λ � ϕ iff �LI ϕ iff �HL ϕ, ϕ ∈ L, provided d(ϕ) ≤ d(λi) for each
λi ∈ Λ.

Proof. Follows immediately from Theorem 15 of [12] and Theorem 4. ��

7 Conclusion and Future Work

The focus of this paper is on the logical foundation of multi-agent systems.
We have successfully developed a notion of logical space for agents in a multi-
modal only knowing language. Clearly, a practical application will require a
more economical way of representing and reasoning within logical spaces, typi-
cally achieved by means of highly restricted languages. However, to implement
constraints like this, one needs to know what “all the options” are. This paper
presents an answer to this fundamental and conceptually important question.

A number of interesting questions can be raised on the basis of this logical
clarification. First, we have not presented any complexity analysis. The size of a
logical space grows quickly beyond any tractable level. However, in a particular
situation one will not need to span the entire space syntactically, exactly like
one in Æ can provide an implicit definition of a logical space by means of a
characteristic formula [8, 11]. We plan to address this question in a subsequent



paper. We also plan to extend the reduction method used to give a constructive
proof of the Modal Reduction Theorem in Æ to ÆI and to extend the language
with language constructs to express different degrees of confidence for each agent
(like in Æ). The latter task is in itself straightforward; however, a non-trivial use
of this would be to develop a theory of multi-agent default reasoning within this
language which generalizes the encoding of default logic in Æ [1].
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